917 resultados para Maple Hydrogen molecular cation ion pi orbital


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the purpose of rational design of optical materials, distributed atomic polarizabilities of amino acid molecules and their hydrogen-bonded aggregates are calculated in order to identify the most efficient functional groups, able to buildup larger electric susceptibilities in crystals. Moreover, we carefully analyze how the atomic polarizabilities depend on the one-electron basis set or the many-electron Hamiltonian, including both wave function and density functional theory methods. This is useful for selecting the level of theory that best combines high accuracy and low computational costs, very important in particular when using the cluster method to estimate susceptibilities of molecular-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of Embedded Image (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and improvement of MC-ICP-MS instruments have fueled the growth of Lu–Hf geochronology over the last two decades, but some limitations remain. Here, we present improvements in chemical separation and mass spectrometry that allow accurate and precise measurements of 176Hf/177Hf and 176Lu/177Hf in high-Lu/Hf samples (e.g., garnet and apatite), as well as for samples containing sub-nanogram quantities of Hf. When such samples are spiked, correcting for the isobaric interference of 176Lu on 176Hf is not always possible if the separation of Lu and Hf is insufficient. To improve the purification of Hf, the high field strength elements (HFSE, including Hf) are first separated from the rare earth elements (REE, including Lu) on a first-stage cation column modified after Patchett and Tatsumoto (Contrib. Mineral. Petrol., 1980, 75, 263–267). Hafnium is further purified on an Ln-Spec column adapted from the procedures of Münker et al. (Geochem., Geophys., Geosyst., 2001, DOI: 10.1029/2001gc000183) and Wimpenny et al. (Anal. Chem., 2013, 85, 11258–11264) typically resulting in Lu/Hf < 0.0001, Zr/Hf < 1, and Ti/Hf < 0.1. In addition, Sm–Nd and Rb–Sr separations can easily be added to the described two-stage ion-exchange procedure for Lu–Hf. The isotopic compositions are measured on a Thermo Scientific Neptune Plus MC-ICP-MS equipped with three 1012 Ω resistors. Multiple 176Hf/177Hf measurements of international reference rocks yield a precision of 5–20 ppm for solutions containing 40 ppb of Hf, and 50–180 ppm for 1 ppb solutions (=0.5 ng sample Hf 0.5 in ml). The routine analysis of sub-ng amounts of Hf will facilitate Lu–Hf dating of low-concentration samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium/hydrogen exchangers (NHEs) are ubiquitous ion transporters that serve multiple cell functions. We have studied two mammalian isoforms, NHE1 (ubiquitous) and NHE3 (epithelial-specific), by measuring extracellular proton (H+) gradients during whole-cell patch clamp with perfusion of the cell interior. Maximal Na(+)-dependent H+ fluxes (JH+) are equivalent to currents >20 pA for NHE1 in Chinese hamster ovary fibroblasts, >200 pA for NHE1 in guinea pig ventricular myocytes, and 5-10 pA for NHE3 in opossum kidney cells. The fluxes are blocked by an NHE inhibitor, ethylisopropylamiloride, and are absent in NHE-deficient AP-1 cells. NHE1 activity is stable with perfusion of nonhydrolyzable ATP [adenosine 5'-(beta,gamma-imido)triphosphate], is abolished by ATP depletion (2 deoxy-D-glucose with oligomycin or perfusion of apyrase), can be restored with phosphatidylinositol 4,5-bisphosphate, and is unaffected by actin cytoskeleton disruption (latrunculin or pipette perfusion of gelsolin). NHE3 (but not NHE1) is reversibly activated by phosphatidylinositol 3,4,5-trisphosphate. Both NHE1 and NHE3 activities are disrupted in giant patches during gigaohm seal formation. NHE1 (but not NHE3) is reversibly activated by cell shrinkage, even at neutral cytoplasmic pH without ATP, and inhibited by cell swelling. NHE1 in Chinese hamster ovary fibroblasts (but not NHE3 in opossum kidney cells) is inhibited by agents that thin the membrane (L-alpha-lysophosphatidylcholine and octyl-beta-D-glucopyranoside) and activated by cholesterol enrichment, which thickens membranes. Expressed in AP-1 cells, however, NHE1 is insensitive to these agents but remains sensitive to volume changes. Thus, changes of hydrophobic mismatch can modulate NHE1 but do not underlie its volume sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-energy e(-) and pi(-) were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% +/- 0.5% for electrons in the beam momenta range 17.5-300 MeV/c and 6.0% +/- 1.3% for pions in the beam momenta range 172-345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere inside the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter's magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various plots of sigma molecular orbitals in diatomic molecules are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Maple scheme for quickly parameterizing vibrational potential energy functions is presented. As an example, the potential energy function's parameters for the vibrational motions in H_2O_2 are obtained assuming the simplest potential energy function. This paper was originally written as a research paper, but rejected by the referees. It is therefore being edited into an ``educational'' paper for student usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HCl molecule is simulated (using Maple) in its dynamics, for both vibrational (and implied) rotational motions. A discussion of the center of mass transformations involved is part of the total presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the consumption of dissolved organic matter (DOM) by bacteria living in untra-oligotrophic artificial or natural seawater, we analyzed the composition of DOM before (timepoint t0, directly after inoculation) and after (timepoint t2, 3 weeks of incubation) growth of the bacteria using Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR-MS). The oligotrophic natural seawater used originates from the South Pacific Gyre. Our data show that the bacteria were able to utilize a variety of different organic compounds. These compounds belong to different chemical compound groups and likely fuel the bacterial energy, carbon and nitrogen requirements under the ultra-oligotrophic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical and biochemical processes associated with the filtration of rainwater through soils, a step in groundwater recharge, were investigated. Under simulated climatic conditions in the laboratory, undisturbed soil columns of partly loamy sands, sandy soils and loess were run as lysimeters. A series of extraction procedures was carried out to determine solid matter in unaltered rock materials and in soil horizons. Drainage water and moisture movement in the columns were analysed and traced respectively. The behaviour of soluble humic substance was investigated by percolation and suspension experiments. The development of seepage-water in the unsaturated zone is closely associated with the soil genetic processes. Determining autonomous chemical and physical parameters are mineral composition and grain size distribution in the original unconsolidated host rock and prevailing climatic conditions. They influence biological activity and transport of solids, dissolved matter and gases in the unsaturated zone. Humic substances, either as amorphous solid matter or as soluble humic acids play a part in diverse sorption, solution and precipitation processes.