957 resultados para Many body perturbation theory
Resumo:
Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.
Resumo:
Lower member of the lower Ganchaigou Formation in the southwestern of Qaidam Basin is one of the main targeted exploration zones. With the advancement of exploration, the targets are gradually switching into the lithologic reservoirs and it is urgent to gain the more precise research results in distribution of sedimentary facies and sandstones. Guided by the theory of sequence stratigraphy and sedimentology as well as on the basis of many logging data, drillings, seismic data and chemical tests, the paper comprehensively analyzes the sedimentary facies and sandstones in the lower member of lower Ganchaigou Formation in the southern of Chaixi. According to the identification marks of the key interface in sequence stratigraphy, the key interfaces in lower member of lower Ganchaigou Formation in the southwestern of Qaidam Basin are identified as two third-order sequences SQ1、SQ2. By calibrating the synthetic seismogram, the seismic sequence, well drilling and logging sequences are united. Based on the works above, this paper chooses seven primary cross-sections and builds connecting-well stratigraphic correlation of seven main connecting-well sections. Ultimately, the high-resolution sequence stratigraphic frameworks in the lower member of the lower Ganchaigou Formation, which are uniform to logging and seismic data, are figured out. In terms of study on each sequence features, the main style of the base-level cycle overlay which forms the third-order sequence is confirmed. It contains asymmetric “becoming deep upward” style and symmetry style. Researching on the spreading characters of sequence stratigraphy indicates that SQ1 and SQ2 are rather thicker near northwest well Shashen 20 and Shaxin1 while they are quite thiner near Hongcan 1, Yuejin, Qie 4 and Dong8-Wu3, and the thickness of SQ1 is thicker than SQ2.Based on the deep analysis of the marks for depositional facies, it is proposed that the lake facies and braid river deltas facies mainly occurred in study areas. Besides, the sorts of sub-facies and micro-facies model are divided and described. Under the control of high-resolution sequence stratigraphic framework, three source directions from Arlarer Mountain、Qimantage Mountain and Dongchai Mountain are identified by using the features of heavy mineral assemblage and paleogeomorphy. In addition, regularities of distribution sedimentary facies in sequence stratigraphic framework are studied in accordance with research thinking of the "point" (single well) "line" (section) "face" (plane). In the stage of lower member in the lower Ganchaigou Formation in the southwestern of Qaidam Basin, it is at the early phrase of evolution of the lake basin with the gradual outspread and the rise of the lake level. Combined with physical analysis of reservoir sands formed in different sedimentary environment, the paper studies the style of favorable sandstone bodies that are underwater distributary channel of braided rive delta front, coarse sand in mouth bar and the sand body in sand flat of shore-shallow lacustrine facies. Finally, this article comprehensively analyzes the distribution relationship between sedimentary facies and favorable sandstone body and proposes the ideas that sequence SQ1 Yuejin area, well east 8-wu3 area, well qie4-qie1 area and well hongcan2 area are distributed areas of favorable sandstone.
Resumo:
In the engineering reinforcement of-rock and soil mass, engineers must consider how to obtain better reinforcing effect at the cost of less reinforcing expense, which, in fact, is the aim of reinforcement design. In order to accomplish the purpose, they require not only researching the material used to reinforce and its structure, but also taking into account of several important geological factors, such as the structure and property of rock and soil mass. How to improve the reinforcing effect according to engineering geomechanical principle at the respect of the reinforcement of engineering soil and rock mass is studied and discussed in this paper. The author studies the theory, technology and practice of geotechnical reinforcement based on engineering geomechanics, taking example for the soil treatment of Zhengzhou Airport, the effect analysis of reinforcement to the slope on the left bank of Wuqiangxi Hydropower Station and the reinforcing design of the No. 102 Landslide and unique sand-slide slope on the Sichuan-Tibet Highway. The paper is comprised of two parts for the convenience of discussion. In the first part, from the first chapter to the fifth chapter, trying to perform the relevant research and application at the viewpoint of soil mass engineering geomechanics, the author mainly discusses the study of reinforcing soft ground soil through dynamical consolidation and its application. Then, in the second part, from the sixth chapter to the eleventh chapter, the study of new technologies in the rock slope reinforcement and their application are discussed. The author finds that not only better reinforcing effect can be gained in the research where the principle and method of rock mass engineering geomechanics is adopted, but also new reinforcing technologies can be put forward. Zhengzhou Airport is an important one in central plains. It lies on Yellow River alluvial deposit and the structure of stratum is complex and heterogeneous. The area of airport is very large, which can result in differential settlement easily, damage of airport and aircraft accident, whereas, there are no similar experiences to dispose the foundation, so the foundation treatment become a principal problem. During the process of treatment, the method of dynamic compaction was adopted after compared with other methods using the theory of synthetic integration. Dynamic compaction is an important method to consolidate foundation, which was successfully used in the foundation of Zhengzhou Airport. For fill foundation, controlling the thickness of fill so as to make the foundation treatment can reach the design demand and optimum thickness of the fill is a difficult problem. Considering this problem, the author proposed a calculation method to evaluate the thickness of fill. The method can consider not only the self-settlement of fill but also the settlement of the ground surface under applied load so as to ensure the settlement occurred during the using period can satisfy the design demand. It is proved that the method is correct after using it to choose reasonable energy of dynamic compaction to treat foundation. At the same time, in order to examine the effect of dynamic compaction, many monitor methods were adopted in the test such as static loading test, modulus of resilience test, deep pore pressure -test, static cone penetration test and the variation of the pore volume measurement. Through the tests, the author summarized the discipline of the accumulation and dissipation of pore pressure in Yellow River alluvial deposit under the action of dynamic compaction, gave a correct division of the property change of silt and clay under dynamic compaction, determined the bearing capacity of foundation after treatment and weighted the reinforcing effect of dynamic consolidation from the variation of the soil particle in microcosmic and the parameter of soil mass' density. It can be considered that the compactness of soil is in proportion to the energy of dynamic compaction. This conclusion provided a reference to the research of the "Problem of Soil Structure-the Central Problem of Soil Mechanics in 21 Century ". It is also important to strengthen rock mass for water conservancy and electric power engineering. Slip-resistance pile and anchoring adit full of reinforced concrete are usually adopted in engineering experience to strengthen rock mass and very important for engineering. But there also some deficiency such as the weakest section can't be highlighted, the monitor is inconvenient and the diameter of pile and adit is very large etc. The author and his supervisor professor Yangzhifa invented prestressed slip-resistance pile and prestressed anchoring adit full of reinforced concrete, utilizing the advantage that the prestressed structure has better anti-tensile characteristic (this invention is to be published). These inventions overcome the disadvantages of general slip-resistance pile and anchoring adit full of reinforced concrete and have the functions of engineering prospecting, strengthening, drainage and monitor simultaneous, so they have better strengthened effect and be more convenient for monitor and more economical than traditional methods. Drainage is an important factor in treatments of rock mass and slop. In view of the traditional drainage method that drainage pore often be clogged so as to resulted in incident, professor Yangzhifa invented the method and setting of guide penetration by fiber bundle. It would take good effect to use it in prestressed slip-resistance pile and anchoring adit full of reinforced concrete. In this paper, the author took example for anchoring adit full of reinforced concrete used to strengthen Wuqiangxi left bank to simulate the strengthened effect after consolidated by prestressed slip-resistance pile, took example for 102 landslide occurred along Sichuan-Tibet highway to simulate the application of slip-resistance pile and the new technology of drainage. At the same time the author proposed the treatment method of flowing sand in Sichuan-Tibet highway, which will benefit the study on strengthening similar engineering. There are five novelties in the paper with the author's theoretical study and engineering practice: 1. Summarizing the role of pore water pressure accumulation and dissipation of the Yellow River alluvial and diluvial soil under the action of dynamical consolidation, which has instructive significance in the engineering construction under the analogical engineering geological conditions in the future. It has not been researched by the predecessors. 2. Putting forward the concept of density D in microcosmic based on the microcosmical structure study of the soil sample. Adopting D to weight the reinforcing effect of dynamic consolidation is considered to be appropriate by the means of comparing the D values of Zhengzhou Airport's ground soil before with after dynamically consolidating reinforcement, so a more convenient balancing method can be provided for engineering practice. 3. According to the deep research into the soil mass engineering geology, engineering rock and soil science, soil mechanics, as well as considerable field experiments, improving the consolidating method in airport construction, from the conventional method, which is dynamically compactmg original ground surface firstly, then filling soil and dynamically layer-consolidating or layer-compacting at last to the upgraded method, which is performing dynamical consolidation after filling soil to place totally at the extent of the certain earth-filling depth. The result of the dynamical consolidation not only complies with the specifications, but also reduces the soil treatment investment by 10 million RMB. 4. Proposing the method for calculating the height of the filled soil by the means of estimating the potential displacement produced in the original ground surface and the filled earth soil under the possible load, selecting the appropriate dynamically-compacting power and determining the virtual height of the filled earth soil. The method is proved to be effective and scientific. 5. According to the thought of Engineering Geomechanics Metal-Synthetic Methodology (EGMS), patenting two inventions (to the stage of roclamation, with Professor Yang Zhi-fa, the cooperative tutor, and etc.) in which multi-functions, engineering geological investigation, reinforcement, drainage and strength remedy, are integrated all over in one body at the viewpoint of the breakage mechanism of the rock slope.
Resumo:
With the large developments of the seismic sources theory, computing technologies and survey instruments, we can model and rebuild the rupture process of earthquakes more realistically. On which earthquake sources' properties and tectonic activities law are realized more clearly. The researches in this domain have been done in this paper as follows. Based on the generalized ray method, expressions for displacement on the surface of a half-space due to an arbitrary oriented shear and tensile dislocation are also obtained. Kinematically, fault-normal motion is equivalent to tensile faulting. There is some evidence that such motion occurs in many earthquakes. The expressions for static displacements on the surface of a layered half-space due to static point moment tensor source are given in terms of the generalized reflection and transmission coefficient matrix method. The validity and precision of the new method is illustrated by comparing the consistency of our results with the analytical solution given by Okada's code employing same point source and homogenous half-space model. The computed vertical ground displacement using the moment tensor solution of the Lanchang_Gengma earthquake displays considerable difference with that of a double couple component .The effect of a soft layer at the top of the homogenous half-space on a shallow normal-faulting earthquake is also analyzed. Our results show that more seismic information would be obtained utilizing seismic moment tensor source and layered half-space model. The rupture process of 1999 Chi-Chi, Taiwan, earthquake investigated by using co-seismic surface displacement GPS observations and far field P-wave records. In according to the tectonic analysis and distributions of aftershock, we introduce a three-segment bending fault planes into our model. Both elastic half-space models and layered-earth models to invert the distribution of co-seismic slip along the Chi-Chi earthquake rupture. The results indicate that the shear slip model can not fit horizontal and vertical co-seismic displacements together, unless we add the fault-normal motion (tensile component) in inversions. And then, the Chi Chi earthquake rupture process was obtained by inversion using the seismograms and GPS observations. Fault normal motions determined by inversion, concentrate on the shallow northern bending fault from Fengyuan to Shuangji where the surface earthquake ruptures reveal more complexity and the developed flexural slip folding structures than the other portions of the rupture zone For understanding the perturbation of surface displacements caused by near-surface complex structures, We have taken a numeric test to synthesize and inverse the surface displacements for a pop-up structure that is composed of a main thrust and a back thrust. Our result indicates that the pop-up structure, the typical shallow complex rupture that occurred in the northern bending fault zone form Fengyuan to Shuangji, can be modeled better by a thrust fault added negative tensile component than by a simple thrust fault. We interpret the negative tensile distributions, that concentrate on the shallow northern bending fault from Fengyuan to Shuangji, as a the synthetic effect including the complexities of property and geometry of rupture. The earthquake rupture process also reveal the more spatial and temporal complexities form Fenyuan to SHuangji. According to the three-components teleseismic records, the S-wave velocity structure beneath the 59 teleseismic stations of Taiwan obtained by using the transform function method and the SA techniques. The integrated results, the 3D crustal structure of Taiwan reveal that the thickest part of crustal local in the western Central Range. This conclusion is consistent with the result form the Bouguer gravity anomaly. The orogenic evolution of Taiwan is young period, and the developing foot of Central Range dose not in static balancing. The crustal of Taiwan stays in the course of dynamic equilibrium. The rupture process of 2003)2,24,Jiashi, Xinjiang earthquake was estimated by the finite fault model using far field broadband P wave records of CDSN and IRIS. The results indicate that the earthquake focal is north dip trust fault including some left-lateral strike slip. The focal mechanism of this earthquake is different form that of earthquakes occurred in 1997 and 1998, but similar to that of 1996, Artux, Xinjiang earthquake. We interpreted that the earthquake caused trust fault due to the Tarim basin pushing northward and orogeny of Tianshan mountain. In the end, give a brief of future research subject: Building the Real Time Distribute System for rupture process of Large Earthquakes Based on Internet.
Resumo:
With the emergence and development of positive psychology, happiness has been the focus of academia and business. However, there is no uniform measure of happiness, because of many different theories of happiness, which are not compatible with others. It bounds the further development of happiness theory. It is also the same with the research of work well-being, which refers to the emotional experience and quality of psychological functioning of employee in the workplace. Subjective well-being (SWB) and psychological well-being (PWB) are two major theories of happiness. Prior research has demonstrated the integration of these two theories theoretically, but still needs more empirical support. Besides, in line with the development of positive psychology, a body of knowledge about positive leadership is advocated. Transformational leadership is treated as one kind of positive leadership, since it emphasizes the leader’s motivational and elevating effect on followers. But the extent to which the transformational leadership can enhance work well-being, and what the mechanism is, these are the questions need to be explored. Based on the integration of SWB and PWB, this research tried to investigate the structure, measurement and mechanism of work well-being, and combining with the theory of transformational leadership, this study also tried to investigate the relationship between transformational leadership and work well-being. The structure and measurement of work well-being, the relationships between work well-being and job characteristics (including job resources and job demands), the relationships among transformational leadership, job resources, work well-being and corresponding outcomes, the relationships among transformational leadership, job demands, work well-being and corresponding outcomes, and the relationships among transformational leadership, group job characteristics, group work well-being and corresponding group outcomes were explored by using content analysis, Subject Matter Experts (SMEs) discussion, and structural questionnaire surveys. More than 7000 subjects were surveyed, and Explore Factor Analysis (EFA), Confirm Factor Analysis (CFA), Structural Equation Modeling (SEM), Hierarchical Linear Modeling (HLM) and other statistics methods were used. The following is the major conclusions. Firstly, work well-being is a two high-order factors structure, which includes affective well-being (AWB) and cognitive well-being (CWB). AWB is similar to SWB, and CWB is similar to PWB. Besides, the construct of AWB includes sub-dimensions of positive emotional experience and negative emotional experience. And the construct of CWB consists of work autonomy, personal growth, work competent, and work significance. Secondly, the relationships between job characteristics and AWB and CWB are different. On one hand job demands are directly related to AWB, and are indirectly related to CWB through the full mediation of AWB, on the other job resources are directly related to CWB, and are indirectly related to AWB through the full mediation of CWB, which means AWB and CWB reciprocally influences each other in the model of job demands-resources. These results were concluded as the process model of work well-being. Thirdly, AWB and CWB are positively related to many workplace outcomes, including job satisfaction, group satisfaction, organizational commitment, turnover intention, job performance, organizational citizenship behavior (OCB), and general psychological health and general physiological health. Fourthly, transformational leadership is indirectly related to CWB through the full mediation of job resources, and is related to AWB through the partial mediation of job demands. Meanwhile, transformational leadership is related to many workplace outcomes through the mediation of job characteristics and work well-being. These results implied that transformational leadership is indeed one kind of positive leadership. Fifthly, in the group level, transformational leadership is indirectly related to group CWB through the full mediation of group job resources, and is related to group AWB through the full mediation of group job demands. Group AWB has positive influence on group CWB, but not vice versa. Group job characteristics and group work well-being fully mediate the relationships between transformational leadership and intragroup cooperation and group performance.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.
Resumo:
Purpose and rationale The purpose of the exploratory research is to provide a deeper understanding of how the work environment enhances or constrains organisational creativity (creativity and innovation) within the context of the advertising sector. The argument for the proposed research is that the contemporary literature is dominated by quantitative research instruments to measure the climate and work environment across many different sectors. The most influential theory within the extant literature is the componential theory of organisational creativity and innovation and is used as an analytical guide (Amabile, 1997; Figure 8) to conduct an ethnographic study within a creative advertising agency based in Scotland. The theory suggests that creative people (skills, expertise and task motivation) are influenced by the work environment in which they operate. This includes challenging work (+), work group supports (+), supervisory encouragement (+), freedom (+), sufficient resources (+), workload pressures (+ or -), organisational encouragement (+) and organisational impediments (-) which is argued enhances (+) or constrains (-) both creativity and innovation. An interpretive research design is conducted to confirm, challenge or extend the componential theory of organisational creativity and innovation (Amabile, 1997; Figure 8) and contribute to knowledge as well as practice. Design/methodology/approach The scholarly activity conducted within the context of the creative industries and advertising sector is in its infancy and research from the alternative paradigm using qualitative methods is limited which may provide new guidelines for this industry sector. As such, an ethnographic case study research design is a suitable methodology to provide a deeper understanding of the subject area and is consistent with a constructivist ontology and an interpretive epistemology. This ontological position is conducive to the researcher’s axiology and values in that meaning is not discovered as an objective truth but socially constructed from multiple realties from social actors. As such, ethnography is the study of people in naturally occurring settings and the creative advertising agency involved in the research is an appropriate purposive sample within an industry that is renowned for its creativity and innovation. Qualitative methods such as participant observation (field notes, meetings, rituals, social events and tracking a client brief), material artefacts (documents, websites, annual reports, emails, scrapbooks and photographic evidence) and focused interviews (informal and formal conversations, six taped and transcribed interviews and use of Survey Monkey) are used to provide a written account of the agency’s work environment. The analytical process of interpreting the ethnographic text is supported by thematic analysis (selective, axial and open coding) through the use of manual analysis and NVivo9 software Findings The findings highlight a complex interaction between the people within the agency and the enhancers and constraints of the work environment in which they operate. This involves the creative work environment (Amabile, 1997; Figure 8) as well as the physical work environment (Cain, 2012; Dul and Ceylan, 2011; Dul et al. 2011) and that of social control and power (Foucault, 1977; Gahan et al. 2007; Knights and Willmott, 2007). As such, the overarching themes to emerge from the data on how the work environment enhances or constrains organisational creativity include creative people (skills, expertise and task motivation), creative process (creative work environment and physical work environment) and creative power (working hours, value of creativity, self-fulfilment and surveillance). Therefore, the findings confirm that creative people interact and are influenced by aspects of the creative work environment outlined by Amabile (1997; Figure 8). However, the results also challenge and extend the theory to include that of the physical work environment and creative power. Originality/value/implications Methodologically, there is no other interpretive research that uses an ethnographic case study approach within the context of the advertising sector to explore and provide a deeper understanding of the subject area. As such, the contribution to knowledge in the form of a new interpretive framework (Figure 16) challenges and extends the existing body of knowledge (Amabile, 1997; Figure 8). Moreover, the contribution to practice includes a flexible set of industry guidelines (Appendix 13) that may be transferrable to other organisational settings.
Resumo:
Fitzgerald, S., Simon, B., and Thomas, L. 2005. Strategies that students use to trace code: an analysis based in grounded theory. In Proceedings of the First international Workshop on Computing Education Research (Seattle, WA, USA, October 01 - 02, 2005). ICER '05. ACM, New York, NY, 69-80
Resumo:
Kurki, M. (2006). Causes of a Divided Discipline: Rethinking the Concept of Cause in International Relations theory. Review of International Studies, 32 (2), 189-216. RAE2008
Resumo:
Scott, Len, and Peter Jackson, 'The Study of Intelligence in Theory and Practice', Intelligence and National Security, (2004) 19(2) pp.139-169 RAE2008
Resumo:
This chapter shows that apart from changes at the systemic and institutional levels, successful reform implementation struggles with a gradual change in academic beliefs, attitudes and behaviours. Currently, visions of the university proposed by the Polish academic community and visions of it proposed by Polish reformers and policymakers (within ongoing reforms) are worlds apart. I shall study recent reforms in the context of specific academic self--protective narratives being produced in the last two decades (at the collective level of the academic profession) and in the context of the Ivory Tower university ideals predominant at the individual level (as studied comparatively through a large--scale European survey of the academic profession). Institutions change both swiftly, radically – and slowly, gradually. Research literature on institutional change until recently was focused almost exclusively on the role of radical changes caused by external shocks, leading to radical institutional reconfigurations. And research literature about the gradual, incremental institutional change have been emergent for about a decade and a half now (Mahoney and Thelen 2010; Streeck and Thelen 2005, 2009; Thelen 2003). Polish higher education provides interesting empirical grounds to test institutional theories. Both types of transformations (radical and gradual) may lead to equally permanent changes in the functioning of institutions, equally deep transformations of their fundamental rules, norms and operating procedures. Questions about institutional change are questions about characteristics of institutions undergoing changes. Endogenous institutional change is as important as exogenous change (Mahoney and Thelen 2010: 3). Moments in which there emerge opportunities of performing deep institutional reforms are short (in Poland these moments occurred in 2009-2012), and between them there are long periods of institutional stasis and stability (Pierson 2004: 134-135). The premises of theories of institutional change can be applied systematically to a system of higher education which shows an unprecedented rate of change and which is exposed to broad, fundamental reform programmes. There are many ways to discuss the Kudrycka reforms - and "constructing Polish universities as organizations" (rather than traditional academic "institutions") is one of more promising. In this account, Polish universities are under construction as organizations, and under siege as institutions. They are being rationalized as organizations, following instrumental rather than institutional logics. Polish academics in their views and attitudes are still following an institutional logic, while Polish reforms are following the new (New Public Management-led) instrumental logics. Both are on a collision course about basic values. Reforms and reformees seem to be worlds apart. I am discussing the the two contrasting visions of the university and describing the Kudrycka reforms as the reistitutionalization of the research mission of Polish universities. The core of reforms is a new level of funding and governance - the intermediary one (and no longer the state one), with four new peer-run institutions, with the KEJN, PKA and NCN in the lead. Poland has been beginning to follow the "global rules of the academic game" since 2009. I am also discussing two academic self-protection modes agains reforms: (Polish) "national academic traditions" and "institutional exceptionalism" (of Polish HE). Both discourses prevailed for two decades, none seems socially (and politically) acceptable any more. Old myths do not seem to fit new realities. In this context I am discussing briefly and through large-scale empirical data the low connectedness to the outside world of Polish HE institutions, low influence of the government on HE policies and the low level of academic entrepreneurialism, as seen through the EUROAC/CAP micro-level data. The conclusion is that the Kudrycka reforms are an imporant first step only - Poland is too slow in reforms, and reforms are both underfunded and inconsistent. Poland is still accumulating disadvantages as public funding and university reforms have not reached a critical point. Ever more efforts lead to ever less results, as macro-level data show. Consequently, it may be useful to construct universities as organizations in Poland to a higher degree than elsewhere in Europe, and especially in Western Europe.
Resumo:
Background: Accommodating Interruptions is a theory that emerged in the context of young people who have asthma. A background to the prevalence and management of asthma in Ireland is given to situate the theory. Ireland has the fourth highest incidence of asthma in the world, with almost one in five Irish young people having asthma. Although national and international asthma management guidelines exist it is accepted that the symptom control of asthma among the young people population is poor. Aim: The aim of this research is to investigate the lives of young people who have asthma, to allow for a deeper understanding of the issues affecting them. Methods: This research was undertaken using a Classic Grounded Theory approach. It is a systematic approach to allowing conceptual emergence from data in generating a theory that explains behaviour in resolving the participant’s main concern. The data were collected through in-depth interviews with young people aged 11-16 years who had asthma for over one year. Data were also collected from participant diaries. Constant comparative analysis, theoretical coding and memo writing were used to develop the theory. Results: The theory explains how young people resolve their main concern of being restricted, by maximizing their participation and inclusion in activities, events and relationships in spite of their asthma. They achieve this by accommodating interruptions in their lives in minimizing the effects of asthma on their everyday lives. Conclusion: The theory of accommodating interruptions explains young people’s asthma management behaviours in a new way. It allows us to understand how and why young people behave the way they do in order minimise the effect of asthma on their lives. The theory adds to the body of knowledge on young people with asthma and challenges some viewpoints regarding their behaviours.
Resumo:
Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.
Resumo:
The wonder of the last century has been the rapid development in technology. One of the sectors that it has touched immensely is the electronic industry. There has been exponential development in the field and scientists are pushing new horizons. There is an increased dependence in technology for every individual from different strata in the society. Atomic Layer Deposition (ALD) is a unique technique for growing thin films. It is widely used in the semiconductor industry. Films as thin as few nanometers can be deposited using this technique. Although this process has been explored for a variety of oxides, sulphides and nitrides, a proper method for deposition of many metals is missing. Metals are often used in the semiconductor industry and hence are of significant importance. A deficiency in understanding the basic chemistry at the nanoscale for possible reactions has delayed the improvement in metal ALD. In this thesis, we study the intrinsic chemistry involved for Cu ALD. This work reports computational study using Density Functional Theory as implemented in TURBOMOLE program. Both the gas phase and surface reactions are studied in most of the cases. The merits and demerits of a promising transmetallation reaction have been evaluated at the beginning of the study. Further improvements in the structure of precursors and coreagent have been proposed. This has led to the proposal of metallocenes as co-reagents and Cu(I) carbene compounds as new set of precursors. A three step process for Cu ALD that generates ligand free Cu layer after every ALD pulse has also been studied. Although the chemistry has been studied under the umbrella of Cu ALD the basic principles hold true for ALD of other metals (e.g. Co, Ni, Fe ) and also for other branches of science like thin film deposition other than ALD, electrochemical reactions, etc.