938 resultados para Malignant Progression
Resumo:
Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition),HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves,Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components.
Resumo:
Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition),HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves,Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components.
Resumo:
Motivated by these difficulties, Castillo et al. (2012) made some suggestions on how to build consistent stochastic models avoiding the selection of easy to use mathematical functions, which were replaced by those resulting from a set of properties to be satisfied by the model.
Resumo:
Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.
Resumo:
An HLA allele-specific cytotoxic T lymphocyte response is thought to influence the rate of disease progression in HIV-1-infected individuals. In a prior study of 139 HIV-1-infected homosexual men, we identified HLA class I alleles and observed an association of specific alleles with different relative hazards for progression to AIDS. Seeking an explanation for this association, we searched HIV-1 protein sequences to determine the number of peptides matching motifs defined by combinations of specific amino acids reported to bind 16 class I alleles. Analyzing complete sequences of 12 clade B HIV isolates, we determined the number of allele motifs that were conserved (occurring in all 12 isolates) and nonconserved (occurring in only one isolate), as well as the average number of allele motifs per isolate. We found significant correlations with an allele’s association with disease progression for counts of conserved motifs in gag (R = 0.73; P = 0.002), pol (R = 0.58, P = 0.024), gp120 (R = 0.78, P = 0.00056), and total viral protein sequences (R = 0.67, P = 0.0058) and also for counts of nonconserved motifs in gag (R = 0.62, P = 0.013), pol (R = 0.74, P = 0.0017), gp41 (R = 0.52, P = 0.046), and total viral protein (R = 0.71, P = 0.0033). We also found significant correlations for the average number of motifs per isolate for gag, pol, gp120, and total viral protein. This study provides a plausible functional explanation for the observed association of different HLA alleles with variable rates of disease progression.
Resumo:
We have examined the effects of inactivation of the p53 tumor suppressor gene on the incidence of apoptotic cell death in two stages of the adenoma-to-carcinoma progression in the intestine: in early adenomas where p53 mutations are rare and in highly dysplastic adenomas where loss of p53 occurs frequently. Homozygosity for an inactivating germ-line mutation of p53 had no effect on the incidence or the rate of progression of ApcMin/+-induced adenomas in mice and also did not affect the frequency of apoptosis in the cells of these adenomas. To examine the effect of p53 loss on apoptosis in late-stage adenomas, we compared the incidence of apoptotic cell death before and after the appearance of highly dysplastic cells in human colonic adenomas. The appearance of highly dysplastic cells, which usually coincides during colon tumor progression with loss of heterozygosity at the p53 locus, did not correlate with a reduction in the incidence of apoptosis. These studies suggest that p53 is only one of the genes that determine the incidence of apoptotic in colon carcinomas and that wild-type p53 retards the progression of many benign colonic adenoma to malignant carcinomas by mechanism(s) other than the promotion of apoptosis.
Resumo:
Inorganic arsenic, a human carcinogen, is enzymatically methylated for detoxication, consuming S-adenosyl-methionine (SAM) in the process. The fact that DNA methyltransferases (MeTases) require this same methyl donor suggests a role for methylation in arsenic carcinogenesis. Here we test the hypothesis that arsenic-induced initiation results from DNA hypomethylation caused by continuous methyl depletion. The hypothesis was tested by first inducing transformation in a rat liver epithelial cell line by chronic exposure to low levels of arsenic, as confirmed by the development of highly aggressive, malignant tumors after inoculation of cells into Nude mice. Global DNA hypomethylation occurred concurrently with malignant transformation and in the presence of depressed levels of S-adenosyl-methionine. Arsenic-induced DNA hypomethylation was a function of dose and exposure duration, and remained constant even after withdrawal of arsenic. Hyperexpressibility of the MT gene, a gene for which expression is clearly controlled by DNA methylation, was also detected in transformed cells. Acute arsenic or arsenic at nontransforming levels did not induce global hypomethylation of DNA. Whereas transcription of DNA MeTase was elevated, the MeTase enzymatic activity was reduced with arsenic transformation. Taken together, these results indicate arsenic can act as a carcinogen by inducing DNA hypomethylation, which in turn facilitates aberrant gene expression, and they constitute a tenable theory of mechanism in arsenic carcinogenesis.
Resumo:
During past decades, knowledge of melanoma biology has increased considerably. Numerous therapeutic modalities based on this knowledge are currently under investigation. Advanced melanoma, nevertheless, remains a prime example of poor treatment response that may, in part, be the consequence of activated N-Ras oncoproteins. Besides oncogenic Ras, wild-type Ras gene products also play a key role in receptor tyrosine kinase growth factor signaling, known to be of importance in oncogenesis and tumor progression of a variety of human neoplasms, including malignant melanoma; therefore, it is reasonable to speculate that a pharmacological approach that curtails Ras activity may represent a sensible approach to inhibit melanoma growth. To test this concept, the antitumor activity of S-trans, trans-farnesylthiosalicylic acid (FTS), a recently discovered Ras antagonist that dislodges Ras from its membrane-anchoring sites, was evaluated. The antitumor activity of FTS was assessed both in vitro and in vivo in two independent SCID mouse xenotransplantation models of human melanoma expressing either wild-type Ras (cell line 518A2) or activated Ras (cell line 607B). We show that FTS (5–50 μM) reduces the amounts of activated N-Ras and wild-type Ras isoforms both in human melanoma cells and Rat-1 fibroblasts, interrupts the Ras-dependent extracellular signal-regulated kinase in melanoma cells, inhibits the growth of N-Ras-transformed fibroblasts and human melanoma cells in vitro and reverses their transformed phenotype. FTS also causes a profound and statistically significant inhibition of 518A2 (82%) and 607B (90%) human melanoma growth in SCID mice without evidence of drug-related toxicity. Our findings stress the notion that FTS may qualify as a novel and rational treatment approach for human melanoma and possibly other tumors that either carry activated ras genes or rely on Ras signal transduction more heavily than nonmalignant cells.
Resumo:
Cell cycle progression is regulated by cAMP in several cell types. Cellular cAMP levels depend on the activity of different adenylyl cyclases (ACs), which have varied signal-receiving capabilities. The role of individual ACs in regulating proliferative responses was investigated. Native NIH 3T3 cells contain AC6, an isoform that is inhibited by a variety of signals. Proliferation of exogenous AC6-expressing cells was the same as in control cells. In contrast, expression of AC2, an isoform stimulated by protein kinase C (PKC), resulted in inhibition of cell cycle progression and increased doubling time. In AC2-expressing cells, platelet-derived growth factor (PDGF) elevated cAMP levels in a PKC-dependent manner. PDGF stimulation of mitogen-activated protein kinases 1 and 2 (MAPK 1,2), DNA synthesis, and cyclin D1 expression was reduced in AC2-expressing cells as compared with control cells. Dominant negative protein kinase A relieved the AC2 inhibition of PDGF-induced DNA synthesis. Expression of AC2 also blocked H-ras-induced transformation of NIH 3T3 cells. These observations indicate that, because AC2 is stimulated by PKC, it can be activated by PDGF concurrently with the stimulation of MAPK 1,2. The elevation in cAMP results in inhibition of signal flow from the PDGF receptor to MAPK 1,2 and a significant reduction in the proliferative response to PDGF. Thus, the molecular identity and signal receiving capability of the AC isoforms in a cell could be important for proliferative homeostasis.
Resumo:
Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3), whose expression directly correlates with cancer progression and acquisition of oncogenic potential by transformed rodent cells. We presently demonstrate that forced expression of PEG-3 in tumorigenic rodent cells, and in human cancer cells, increases their oncogenic potential in nude mice as reflected by a shorter tumor latency time and the production of larger tumors with increased vascularization. Moreover, inhibiting endogenous PEG-3 expression in progressed rodent cancer cells by stable expression of an antisense expression vector extinguishes the progressed cancer phenotype. Cancer aggressiveness of PEG-3 expressing rodent cells correlates directly with increased RNA transcription, elevated mRNA levels, and augmented secretion of vascular endothelial growth factor (VEGF). Furthermore, transient ectopic expression of PEG-3 transcriptionally activates VEGF in transformed rodent and human cancer cells. Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.
Resumo:
Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.
Resumo:
Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19 anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ± SEM) of total alterations detected per tumor were 2.9 ± 0.7 for MI, 9.2 ± 1.2 for MII, and 13.3 ± 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13–q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5–8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.
Resumo:
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.
Resumo:
Inoculation of diploid budding yeast onto nitrogen-poor agar media stimulates a MAPK pathway to promote filamentous growth. Characteristics of filamentous cells include a specific pattern of gene expression, elongated cell shape, polar budding pattern, persistent attachment to the mother cell, and a distinct cell cycle characterized by cell size control at G2/M. Although a requirement for MAPK signaling in filamentous gene expression is well established, the role of this pathway in the regulation of morphogenesis and the cell cycle remains obscure. We find that ectopic activation of the MAPK signal pathway induces a cell cycle shift to G2/M coordinately with other changes characteristic of filamentous growth. These effects are abrogated by overexpression of the yeast mitotic cyclins Clb1 and Clb2. In turn, yeast deficient for Clb2 or carrying cdc28-1N, an allele of CDK defective for mitotic functions, display enhanced filamentous differentiation and supersensitivity to the MAPK signal. Importantly, activation of Swe1-mediated inhibitory phosphorylation of Thr-18 and/or Tyr-19 of Cdc28 is not required for the MAPK pathway to affect the G2/M delay. Mutants expressing a nonphosphorylatable mutant Cdc28 or deficient for Swe1 exhibit low-nitrogen-dependent filamentous growth and are further induced by an ectopic MAPK signal. We infer that the MAPK pathway promotes filamentous growth by a novel mechanism that inhibits mitotic cyclin/CDK complexes and thereby modulates cell shape, budding pattern, and cell-cell connections.
Resumo:
The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.