989 resultados para Maine imprints
Resumo:
To quantify species- specific relationships between bivalve carbonate isotope geochemistry ( delta O-18(c)) and water conditions ( temperature and salinity, related to water isotopic composition [delta O-18(w)]), an aquaculture-based methodology was developed and applied to Mytilus edulis ( blue mussel). The four- by- three factorial design consisted of four circulating temperature baths ( 7, 11, 15, and 19 degrees C) and three salinity ranges ( 23, 28, and 32 parts per thousand ( ppt); monitored for delta O-18(w) weekly). In mid- July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [ T degrees C = 16.19 (+/- 0.14) - 4.69 (+/- 0.21) {delta O-18(c) VPBD - delta O-18(w) VSMOW} + 0.17 (+/- 0.13) {delta O-18(c) VPBD - delta O-18(w) VSMOW}(2); r(2) = 0.99; N = 105; P < 0.0001] is nearly identical to the Kim and O'Neil ( 1997) abiogenic calcite equation over the entire temperature range ( 7 - 19 degrees C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. ( 1953) and Horibe and Oba ( 1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O'Neil ( 1997) equilibrium- based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture- based methodology described here allows similar species- specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions.
Resumo:
Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.
Resumo:
The spatial distribution of the American lobster Homarus americanus is influenced by many factors, which are often difficult to quantify. We implemented a modeling approach for quantifying season-, size-, and sex-specific lobster spatial distribution in the Gulf of Maine with respect to environmental and spatial variables including bottom temperature, bottom salinity, latitude, longitude, depth, distance offshore, and 2 substratum features. Lobster distribution was strongly associated with temperature and depth, and differed seasonally by sex. In offshore waters in the fall, females were dominant at higher latitudes and males at lower latitudes. This segregation was not apparent in the spring although females were still dominant at higher latitudes in offshore waters. Juveniles and adults were also distributed differently; juveniles were more abundant at the lower latitudes in inshore waters, while adults were more widespread along the entire coast. These patterns are consistent with the ecology of the American lobster. This study provides a tool to evaluate changes in lobster spatial distribution with respect to changes in key habitat and other environmental variables, and consequently could be of value for the management of the American lobster.
Resumo:
Pioneering work by J. Stan Cobb described how habitat architecture and body size scaling affect shelter-related behavior of American lobsters. Subsequent research suggested that shelter availability and competition could set local carrying capacity and demographics for this species. To determine how shelter spacing affects population density, the intensity of intraspecific competition and the distribution of body size for this species, I deployed sets of 10 identically sized artificial shelters spaced at distances of 2.5, 0.5, 1.0, 1.5 and 2.0 meters on otherwise featureless substrate at 10 m depth in mid-coast Maine, U.S.A. Five sets had two parallel strings of five opposing shelters and an additional linear string set 2 to apart without opposing shelters was the most widely separated treatment. Shelters spaced I m apart and closer had higher lobster population densities, more intraspecific competition and higher proportions of empty shelters. Surprisingly, lobsters there were also significantly smaller, declining from 62.7 mm to 50.9 on the carapace (CL) for 2 to linear to 0.25 m spaced shelters, respectively. Nearly all 932 lobsters measured in this study were juvenile (< 90 mm CL) and preharvestable (< 83 mm CL) sized, so mate selection and fishing effects were unlikely. At the scale of the experiment, larger lobsters leave or avoid areas of high lobster population density and intense competition for areas of low population density and relaxed competition (called "demographic diffusion"). Scuba surveys in coastal zones found lobster population densities scale with shelter densities and were highest in boulder habitat where, like the experiment, more than half the shelters were vacant. Fisheries independent scuba and trawl surveys in Maine's shallow coastal zone repeatedly recorded declines of preharvestable, lobsters larger than 60 turn CL in size and increases of those sizes offshore and in deep water. It is possible that this demographic diffusion is driven by behaviors associated with intraspecific shelter competition.
Resumo:
We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.
Resumo:
Cancers of the reproductive system are among the leading causes of mortality in women in the United States. While both genetic and environmental factors have been implicated in their etiology, the extent of the contribution of environmental factors to human diseases remains controversial. To better address the role of environmental exposures in cancer etiology, there has been an increasing focus on the development of nontraditional, environmentally relevant models. Our research involves the development of one such model, Gonadal tumors have been described in the softshell clam (Mya arenaria) in Maine and the hardshell clam (Mercenaria spp.) from Florida. Prevalence of these tumors is as high as 40% in some populations in eastern Maine and 60% in Some areas along the Indian River in Florida. The average tumor prevalence in Maine and Florida is approximately 20 and 11%, respectively. An association has been suggested between the use of herbicides and the incidence of gonadal tumors in the softshell clam in Maine. The role of environmental exposures in the development of the tumors in Mercenaria in Florida is unknown, however, there is evidence that genetic factors may contribute to its etiology. Epidemiologic studies of human populations in these same areas show a higher than average mortality rate due to cancers of the reproductive system in women, including both ovarian and breast career. The relationship, if any, among these observations is unknown, Our studies on the molecular basis of this disease in clams may provide additional information on environmental exposures and their possible link to cancer in clams and other organisms, including humans.
Resumo:
The American lobster Homarus americanus and kelp Laminaria longicruris and L. saccharina are prominent and often intimately associated members of the subtidal community in the western North Atlantic Ocean. However, no one has identified the nature of this relationship or specifically investigated whether kelp beds are a superior habitat for lobsters. We conducted field studies in 1990 and 1991 at a coastal site centrally located along the Gulf of Maine, USA, to determine how lobsters use kelp beds as habitat. Identically sized and spaced plots of live and artificial (plastic) kelp were established and monitored for lobster population densities. Adjacent featureless sediment plots of identical size served as controls. Lobster population density and biomass were significantly higher in both real and artificial kelp treatments than in non-kelp control plots (p < 0.0001). The change in lobster density was apparent the day following placement of the experiment, so a secondary trophic effect such as attracting prey into treatments is unlikely to have occurred. Thus, kelp beds can affect local lobster population densities by providing shelter for lobsters, thereby concentrating individuals and increasing the local carrying capacity of potential lobster habitats. The effect of kelp beds on the local carrying capacity of lobster habitats was further explored by testing how lobsters respond to differing patch sizes. A graded size series of circular patches of artificial kelp was established, in which kelp blade density and total area were held constant for each treatment. Treatments were subdivided into four 1 M2, two 2 M2, or one 4 m2 patches. Experiments were surveyed for lobster population density and size structure to determine ff statistical differences existed among treatments. Lobster density was significantly greater in the smallest patches (p < 0.001). Moreover, lobsters typically occupied the edges of kelp beds, and their abundance within kelp patches corresponded to the patch's perimeter-to-area relationship. This suggests that edge effects' influence the local carrying capacity for lobsters by influencing the lobsters' choice of kelp beds as habitat.
Resumo:
The rate of proteolysis of amino acids was used to assess the nutritional lability of various materials making up estuarine seston in 3 Maine, USA, estuaries. Physical separations of subcellular fractions of phytoplankton cells led to higher proteolysis rate constants for the cytoplasmic fraction (>1.2 h(-1)) than for the membrane fraction (0.2 to 1 h(-1)). Whole cells, copepod fecal pellets, bottom sediments, and estuarine seston had overlapping ranges of rate constants of 0.17 to 1.3 h(-1), which were indistinguishable from one another. Protein pools in the seston of these estuaries throughout the seasons were dominated by phytoplankton production and its fresh detrital products. Inverse relationships between proteolysis rate constants for estuarine seston and the ratios of pheopigments to chlorophyll indicates that the average lability of seston decreases with the disappearance of cytoplasmic material in suspension. This kinetic approach to the quality of food resources implies the existence of different pools of digestible protein for estuarine heterotrophs with different gut residence times. Preferential enrichment of membrane components in sestonic detritus may result from the differential lability of proteins in cytoplasm versus membrane components of cells.
Resumo:
We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function m(ω) only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter α in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of P[ρ|D] in the full Nω » Nτ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width delta peaks and more realistic scenarios, based on the perturbative Euclidean Wilson Loop as well as the Wilson Line correlator in Coulomb gauge.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
Proteinaceous material in marine sediments which is available to proteolytic hydrolysis has been measured using a new method. This technique utilizes Coomassie Blue dye binding, which has the advantage of being sensitive only to larger polypeptides. Substantial interferences from other sedmentary organic substances are overcome by using a standard additions approach in conjunction with enzymatic digestion of the protein. Although tedious, the technique provides acceptable precision and accuracy. Measurements of protein in surficial nearshore sediments of the Gulf of Maine and St. Croix yield values ranging from 0.1 to 2.2 mg g-1, which account for a minor fraction of total nitrogen or acid-hydrolyzable amino acids. Protein decreases downcore at a faster rate than either of these 2 indicators of nitrogenous material, indicating the greater lability of the truly proteinaceous material. Biomass comprises a minor portion of the measured protein.
Resumo:
We have identified benthic recruitment habitats and nursery grounds of the American lobster Homarus americanus Milne Edwards in the coastal Gulf of Maine, USA, by systematically censusing subtidal sediment, cobble, and ledge substrata. We distinguish lobsters between settlement size (5 mm carapace length (CL) to ca 40 mm CL as the 'early benthic phase' (EBP) because they are ecologically and behaviorally distinct from larger lobsters. EBP lobsters are cryptic and apparently restricted to shelter-providing habitats (primarily cobble substratum) in coastal Gulf of Maine. In these habitats we found average population densities of EBP lobsters as high as 6.9 m-2. EBP lobsters were virtually absent from ledge and sedimentary substrata devoid of vegetation although larger lobsters are commonly found there. It is possible that the requirement for shelter-providing substrata by this life phase creates a natural demographic 'bottleneck' to benthic recruitment for the species. Prime cobble recruitment habitat is relatively rare and comprises ca 11 % of the 60.2 km of shoreline at our study area in midcoast Maine. If this low availability of cobble exists throughout the Gulf of Maine, as other studies indicate, it could limit lobster production potential. We verified the geographic extent of recruitment to cobble habitats censused in 3 of 4 regions spanning ca 300 km of the coastal Gulf of Maine (from Nahant, Massachusetts to Swans Island, Maine). Early benthic phase lobsters were absent from cobble censused in the northeastern extreme of our survey (Swans Island). This pattern is consistent with earlier speculation that relatively cool water temperatures may limit larval settlement in this region.
Resumo:
Management plans to reduce human-caused deaths of North Atlantic right whales Eubalaena glacialis depend, in part, on knowing when and where right whales are likely to be found. Local environmental conditions that influence movements of feeding right whales, such as ultra-dense copepod patches, are unpredictable and ephemeral. We examined the utility of using the regional-scale mean copepod concentration as an indicator of the abundance of right whales in 2 critical habitats off the northeastern coast of the United States: Cape Cod Bay and Great South Channel. Right whales are usually found in Cape Cod Bay during the late winter and early spring, and in the Great South Channel during the late spring and early summer. We found a significant positive relationship between mean concentration of the copepod Calanus finmarchicus in the western Gulf of Maine and the frequency of right whale sightings in the Great South Channel. In Cape Cod Bay we found a significant positive relationship between the mean concentration of other copepods (largely Pseudocalanus spp. and Centropages spp.) and the frequency of right whale sightings. This information could be used to further our understanding of the environmental factors that drive seasonal movement and aggregation of right whales in the Gulf of Maine, and it offers a tool to resource managers and modelers who seek to predict the movements of right whales based upon the concentration of copepods.
Resumo:
The ratio between oxygen supply and oxygen demand was examined as a predictor of benthic response to organic enrichment caused by salmon net-pen aquaculture. Oxygen supply to the benthos was calculated based on Fickian diffusion and near-bottom flow velocities. A strong linear correlation was found between measured carbon sedimentation rates and rates of benthic metabolism. This relationship allowed an estimation of oxygen demand based on sedimentation rates. Comparison of several production sites in Maine (USA) coastal waters showed that for sites where oxygen demand exceeded supply benthic impacts were high and for sites where oxygen supply exceeded demand benthic impacts were low. These findings were summarized in the form of a predictive model that should be useful in siting salmon production facilities.
Resumo:
This study adapted the current model of science undergraduate research experiences (URE's) and applied this novel modification to include community college students. Numerous researchers have examined the efficacy of URE's in improving undergraduate retention and graduation rates, as well as matriculation rates for graduate programs. However, none have detailed the experience for community college students, and few have employed qualitative methodologies to gather relevant descriptive data from URE participants. This study included perspectives elicited from both non-traditional student participants and the established laboratory community. The purpose of this study was to determine the effectiveness of the traditional model for a non-traditional student population. The research effort described here utilized a qualitative design and an explanatory case study methodology. Six non-traditional students from the Maine Community College System participated in this study. Student participants were placed in six academic research laboratories located throughout the state. Student participants were interviewed three times during their ten-week internship and asked to record their personal reflections in electronic format. Participants from the established research community were also interviewed. These included both faculty mentors and other student laboratory personnel. Ongoing comparative analysis of the textual data revealed that laboratory organizational structure and social climate significantly influence acculturation outcomes for non-traditional URE participants. Student participants experienced a range of acculturation outcomes from full integration to marginalization. URE acculturation outcomes influenced development of non-traditional students? professional and academic self-concepts. Positive changes in students? self-concepts resulted in greater commitment to individual professional goals and academic aspirations. The findings from this study suggest that traditional science URE models can be successfully adapted to meet the unique needs of a non-traditional student population – community college students. These interpretations may encourage post-secondary educators, administrators, and policy makers to consider expanded access and support for non-traditional students seeking science URE opportunities.