978 resultados para MULTIGRAFT COPOLYMERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retaining hexagonal lyotropic liquid crystal (LLC) structures in polymers after surfactant removal and drying is particularly challenging, as the surface tension existing during the drying processes tends to change the morphology. In this study, cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogels were prepared in LLC hexagonal phases formed from a dodecyltrimethylammonium bromide (DTAB)/water system. The retention of the hexagonal LLC structures was examined by controlling the surface tension. Polarized light microscopy, X-ray diffraction and small angle X-ray scattering results indicate that the hexagonal LLC structure was successfully formed before polymerization and well retained after polymerization and after surfactant removal when the surface tension forces remained neutral. Controlling the surface tension during the drying process can retain the nanostructures templated from lyotropic liquid crystals which will result in the formation of materials with desired nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(styrene-β-isobutylene-β-styrene)-poly(3-hexylthiophene) (SIBS-P3HT) conducting composite fibers are successfully produced using a continuous flow approach. Composite fibers are stiffer than SIBS fibers and able to withstand strains of up 975% before breaking. These composite fibers exhibit interesting reversible mechanical and electrical characteristics, which are applied to demonstrate their strain gauging capabilities. This will facilitate their potential applications in strain sensing or elastic electrodes. Here, the fabrication and characterization of highly stretchable electrically conducting SIBS-P3HT fibers using a solvent/non-solvent wet-spinning technique is reported. This fabrication method combines the processability of conducting SIBS-P3HT blends with wet-spinning, resulting in fibers that could be easily spun up to several meters long. The resulting composite fiber materials exhibit an increased stiffness (higher Young’s modulus) but lower ductility compared to SIBS fibers. The fibers’ reversible mechanical and electrical characteristics are applied to demonstrate their strain gauging capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macromolecular assembly of block copolymers into numerous nanostructures resembles self-organization of proteins and cellular components found in nature. In order to mimic nature’s assemblies either to cure a disease or construct functional devices, the organization principles underpinning the emergence of complex shapes need to be understood. In the same vein, this study aimed at understanding morphology evolution in a triblock copolymer blend in aqueous solution. An ABA type amphiphilic triblock copolymer (polystyrene-b-polyethylene oxide-b-polystyrene, PS-b-PEO-b-PS) was synthesized at different compositions via atom transfer radical polymerization (ATRP) and self-assembly behavior of a binary mixture in aqueous solution was studied. Block copolymers that form worms and vesicles in its pristine state was shown to form complex morphologies such as fused rings, “jellyfish”, toroid vesicles, large compound vesicles and large lamellae after blending. The tendency of vesicle-forming block copolymer to form bilayers may be responsible for triggering complex morphologies when mixed with a worm or micelle-forming polymer. In other words, the interplay between curvature effects produced by two distinct polymers with different hydrophobic block lengths results in complex morphologies due to chain segregation within the nanostructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel biodegradable pH- and salinity-responsive cellulose copolymer was prepared by grafting 2-(Dimethylamino) ethylmethacrylate (DMAEMA) onto bagasse cellulose in ionic liquid. The grafting polymerization was achieved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) under microwave irradiation. Copolymers were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermo gravimetric analysis measurements. The results revealed that polymer chains had been successfully bonded to the cellulose backbone. Furthermore, the self-assembly of cellulose-g-DMAEMA copolymers at various salt concentrations and pH solution were investigated by means of swelling behavior measurement. It indicated that the copolymers presented dual pH and salinity-responsive properties. The synthetic strategy showed great potential in the modification of other cellulosic biomass to afford new biomaterials with desired properties. © 2014 Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphology evolution in complexes of amphiphilic block copolymers poly(styrene)-b-poly(acrylic acid) (PS-b-PAA) and poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO) in the presence of polyaniline (PANI) in aqueous solution is reported. Transmission electron microscopy, atomic force microscopy, and dynamic light scattering techniques were used to study the morphologies at various PANI contents [aniline]/[acrylic acid] ([ANI]/[AA]) ranging from 0.1 to 0.7. The interpolyelectrolyte complex formed between PAA and PANI plays a key role in the morphology transformation. Spherical micelles formed from pure block copolymers were transformed into large compound vesicles upon increasing PANI concentration due to internal block copolymer segregation. In addition to varying PANI content, the kinetic pathway of nanoparticle formation was controlled through different water addition methods and was critical in the formation of multigeometry nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary and ternary nanocomposites were produced by incorporating, via melt compounding, two types of octa-and dodecaphenyl substituted polyhedral oligomeric silsesquioxanes (POSS), montmorillonite (MMT), and combinations of POSS with MMT into nylon 6. The tensile, flexural, and dynamic thermo-mechanical properties of these materials were characterized and their structure-property relationships discussed. The results show that the losses in ductility and toughness experienced after inclusion of MMT into nylon 6 can be balanced out by co-mixing MMT with the dodecaphenyl- POSS to produce a ternary nanocomposite. This trend however was less pronounced in the ternary MMT/octaphenyl-POSS system. Analysis of the microstructure organization in these materials using XRD and SEM sheds some light on understanding the differences in behavior. Both types of POSS particles mixed alone in nylon 6 were found to be polydisperse (500 nm to a few microns in size) and locally aggregated, yielding materials with similar mechanical performance. The co-mixing of MMT with the octaphenyl- POSS served to break down the POSS crystal aggregates, enhancing their micro-mechanical reinforcing action. On the other hand, the POSS crystals were not affected in the MMT/dodecaphenyl-POSS system, which led to improving their toughening ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of polymer architecture on the ion dynamics and local structure to understand the factors that might lead to the design of highly conductive and mechanically robust polyelectrolytes. Molecular dynamic simulations were undertaken on the sodium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl) imide] P(STFSINa) homopolymer and its copolymers with either ether or styrene spacer groups to investigate the spacer length and polarity dependence of Na-ion transport. Using a scaled charge model, we observed a continuous ion aggregate network in the homopolymer, which facilitates the fast ion dynamics despite the rigid polymer matrix. The longest spacer groups disrupt this percolating ionic network differently, with the ether group being more disruptive than the styrene group, and leading to more discrete ionic aggregates. The copolymer with the ether spacer was also found to result in an alternative Na-ion diffusion mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A estrutura básica predomínante encontrada em todos os copolímeros foi a de longos blocos de polipropileno cristalizáveis, separados por unidades isoladas de etileno, que atuaram como defeitos cristalínos, reduzindo o grau de cristalínidade, além da perfeição e da espessura dos cristais. O gradual aumento do teor de etileno nas amostras origínais, até aproximadamente5 moI % provocou redução progressiva no comprimento dos blocos de propileno em ambas as frações cristalizável e elastomérica. Acima daquela concentração, o etileno mostrou por principal efeito a elevação do teor de borracha de etileno-propileno(EPR), refletíndo-seem pronunciado aumento da resistência ao impacto dos copolímeros, com pouca alteração do comprimento das seqüências propiJênicas nas frações cristaJizáveJe elastomérica. A estrutura e a morfologia da borracha EPR gerada foram analisadas, observando-se sua excepcional dispersão na fase contínua cristalína. Análise das curvas de fusão por DSC, utilizando-se conceitos cínéticos, demonstrou a existência de uma energia de ativação aparente de fusão, associada à introdução de unidades etilênicas nas cadeias, e relacionada ao processo de fusão dos cristais poliméricos. A redução de cristalínidade das amostras e o aumento de mobilidade de cadeia da fase amorfa para teores crescentes de etileno resultaram em redução da rigidez dos copolímeros. Propriedades ópticas, como "haze" e brilho mostraram-se dependentesdo balanço entre o teor de cristais e o teor de borracha. Um balanço global das propriedades analisadas sugere uma composição ótima para aplicações típicas de copolímeros de propileno-etileno aquela com teores de etileno entre 4 e 6 moI % (aproximadamente 3 -4 % em massa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foram estudadas, neste trabalho, interacões por complexos de transferência de carga, através de medidas gravimétricas do grau de inchamento de géis de poli(isopreno) reticulado,contendo grupos aceptores de carga, em presença de grupos doadores de carga, de pequeno peso molecular, dissolvidos em tolueno. Para este fim, poli(isopreno) sintético proveniente da COPERBO - Companhia Pernambucana de Borracha Sintética, após purificação em clorofórmio, foi caracterizado por espectroscopia no infra-vermelho. O seu peso molecular médio foi determinado por viscosimetria em tolueno e o valor de Mv obtido foi 8,25 x 105. Através de epoxidação da dupla ligacão e hidrólise ácida do respectivo anel oxirano, foram introduzidos no poli(isopreno), previamente purificado, grupos aceptores de carga do tipo cloranil e ácido 3,5-dinitro-benzóico, e grupos doadores de carga do tipo carbazola. Obteve-se, desta forma, copolímeros aceptores do tipo poli (isopreno - co-cloranil) e poli(isopreno-co-(3,5-dinitro-benzoato)) e copolímero doador do tipo poli(isopreno- co-carbazola). A quantidade de cada espécie introduzida foi determinada por espectroscopia no ultra violeta. Poli(isopreno) e os copolímeros contendo grupos doadores ou aceptores foram reticulados em solução utilizando 4,4'-(4,4'-difenilmetileno)-bis- 1,2,4-triazolina-3,5-diona (BPMTD). Os filmes reticulados, após retirada a fase sol, e secos à vácuo, foram submetidos a inchamento em tolueno puro e em solução de tolueno contendo grupos aceptores ou doadores de carga, nas proporções 10:1, 1:1 e 1:10 (polímero: grupo doador ou polímero: grupo aceptor de carga), a 25, 30, 35 e 40ºC. Das medidas gravimétricas do grau de inchamento, foi verificado a formação de complexos por transferência de carga entre os copolímeros aceptores e carbazola. Foi verificado ainda que copolímeros contendo grupos aceptores do tipo cloranil possuem maior tendência a formar complexos por transferência de carga do que copolímeros aceptores contendo grupos 3,5-dinitro-benzoíla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.