997 resultados para MU-N


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Oxidative modification of low-density lipoprotein (LDL) has been demonstrated in patients with end-stage renal disease, where it is associated with oxidative stress and plays a key role in the pathogenesis of atherosclerosis. In this context, the generation of minimally oxidized LDL, also called electronegative LDL [ LDL(-)], has been associated with active disease, and is a detectable sign of atherogenic tendencies. The purpose of this study was to evaluate serum LDL(-) levels and anti-LDL(-)IgG autoantibodies in end-stage renal disease patients on dialysis, comparing patients on hemodialysis (HD), peritoneal dialysis (PD) and a control group. In addition, the serum lipid profile, nutritional status, biochemical data and parameters of mineral metabolism were also evaluated. Methods: The serum levels of LDL(-) and anti-LDL(-) IgG autoantibodies were measured in 25 patients undergoing HD and 11 patients undergoing PD at the Centro Integradode Nefrologia, Rio de Janeiro, Brazil. Ten healthy subjects served as a control group. Serum levels of albumin, total cholesterol, triglycerides and lipoproteins were measured. Calculations of subjects` body mass index and measurements of waist circumference, triceps skin fold and arm muscle area were performed. Measurements of hematocrit, serum blood urea nitrogen, creatinine, parathyroid hormone, phosphorus and calcium were taken. Results: Levels of LDL(-) were higher in HD patients (575.6 +/- 233.1 mu g/ml) as compared to PD patients (223.4 +/- 117.5 mu g/ml, p < 0.05), which in turn were higher than in the control group (54.9 +/- 33.3 mu g/ml, p < 0.01). The anti-LDL(-) IgG autoantibodies were increased in controls (0.36 +/- 0.09 mu g/ ml) as compared to PD (0.28 +/- 0.12 mu g/ml, p < 0.001) and HD patients (0.2 +/- 0.1 mu g/ml, p < 0.001). The mean values of total cholesterol and LDL were considered high in the PD group, whereas the mean triceps skin fold was significantly lower in the HD group. Conclusion: Levels of LDL(-) are higher in renal patients on dialysis than in normal individuals, and are reciprocally related to IgG autoantibodies. LDL(-) may be a useful marker of oxidative stress, and this study suggests that HD patients are more susceptible to cardiovascular risk due to this condition. Moreover, autoantibodies reactive to LDL(-) may have protective effects in chronic kidney disease. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rosiglitazone (RSG), a thiazolidinedione antidiabetic drug, is metabolized by CYP450 enzymes into two main metabolites: N-desmethyl rosiglitazone (N-Dm-R) and rho-hydroxy rosiglitazone (rho-OH-R). In humans, CYP2C8 appears to have a major role in RSG metabolism. On the other hand, the in vitro metabolism of RSG in animals has not been described in literature yet. Based on these concerns, the kinetic metabolism study of RSG using rat liver microsomal fraction is described for the first time. Maximum velocity (V (max)) values of 87.29 and 51.09 nmol/min/mg protein were observed for N-Dm-R and rho-OH-R, respectively. Michaelis-Menten constant (K (m)) values were of 58.12 and 78.52 mu M for N-Dm-R and rho-OH-R, respectively. Therefore, these results demonstrated that this in vitro metabolism model presents the capacity of forming higher levels of N-Dm-R than of rho-OH-R, which also happens in humans. Three other metabolites were identified employing mass spectrometry detection under positive electrospray ionization: ortho-hydroxy-rosiglitazone (omicron-OH-R) and two isomers of N-desmethyl hydroxy-rosiglitazone. These metabolites have also been observed in humans. The results observed in this study indicate that rats could be a satisfactory model for RSG metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymetallic [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru( bpy)(2)Cl](PF(6))(2) complex (bpy = 2,2`-bipyridine, BPE = trans- 1,2-bis(4-pyridil) ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru(3)O] moiety with a [ Ru( bpy) 2( BPE) Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru(bpy)(2)Cl] (2+) doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)(2)(BPE)] charge-transfer bands and to the [Ru(3)O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at - 1.07 V, 0.13 V, 1.17 V, 2.91 V and - 1.29 V (vs SHE) assigned to the [Ru(3)O](-1/0/+ 1/+ 2/+3) and to the bpy (0/-1) redox processes; also a wave is observed at 0.96 V, assigned to the Ru (+2/+ 3) pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the pi-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Following sinoaortic denervation (SAD), isolated rat aortas present oscillatory contractions and demonstrate a heightened contraction for alpha-adrenergic agonists. Our aim was to verify the effects of SAD on connexin43 (Cx43) expression and phenylephrine-induced contraction in isolated aortas. Methods and results Three days after surgery (SAD or sham operation), isolated aortic rings were exposed to phenylephrine and acetylcholine (0.1-10 mu M) in the presence or absence of the gap junction blocker 18 beta-glycyrrhetinic acid (18 beta-GA, 100 mu M). Vascular reactivity to potassium chloride (KCl, 4.7-120 mM) was also examined. The incidence of rats presenting oscillatory contractions was measured. Effects of SAD on the vascular smooth muscle expression of the Cx43 mRNA by RT-PCR and western blotting for Cx43 protein were examined. Phenylephrine-induced contraction was higher in SAD rat aortas compared with the control. In the presence of 18 beta-GA, the response to phenylephrine was similar in both groups. Oscillatory contractions were observed in 10/10 SAD rat aortas vs. 2/10 controls. Relaxing response to acetylcholine was similar in both groups, but in the presence of 18 beta-GA, the response to acetylcholine decreased significantly in the sham-operated group (82.7 +/- 7.6% reduction of relaxation), whereas a half-maximal relaxation (reduction of 46.2 +/- 5.3%) took place in SAD rat aortas. KCl-induced contraction was similar in both groups. Following SAD, RT-PCR revealed significantly increased levels of Cx43 mRNA (9.85 fold, P < 0.01). Western blot analysis revealed greater levels of Cx43 protein (P < 0.05). Conclusion Blood pressure variability evoked by SAD leads to increased expression of Cx43, which could contribute to enhanced phenylephrine-induced contraction and oscillatory activity in isolated aortas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are important intracellular sources and targets of reactive oxygen species (ROS), while flavonoids, a large group of secondary plant metabolites, are important antioxidants. Following our previous study on the energetics of mitochondria exposed to the flavonoids quercetin, taxifolin, catechin and galangin, the present work addressed the antioxidant activity of these compounds (1-50 mu mol/L) on Fe2+/citrate-mediated membrane lipid peroxidation (LPO) in isolated rat liver mitochondria, running in parallel studies of their antioxidant activity in non-organelle systems. Only quercetin inhibited the respiratory chain of mitochondria and only galangin caused uncoupling. Quercetin and galangin were far more potent than taxifolin and catechin in affording protection against LPO (IC50 = 1.23 +/- 0.27 and 2.39 +/- 0.79 mu mol/L, respectively), although only quercetin was an effective scavenger of both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals. These results, together with the previous study, suggest that the 2,3-double bond in conjugation with the 4-oxo function in the flavonoid structure are major determinants of the antioxidant activity of flavonoids in mitochondria, the presence of an o-di-OH structure on the B-ring, as occurs in quercetin, favours this activity via superoxide scavenging, while the absence of this structural feature in galangin, favours it via a decrease in membrane fluidity and/or mitochondrial uncoupling. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a convergent approach for the generation of dendrimers containing the [Ru3O(aC)(6)] electroactive core, of great interest as multielectron transfer catalysts. The proposed strategy is based on the generation of the trimeric complex [(Ru3O(ac)(6)(4-pic)(2)(pz))2-mu(2)-Ru3O(ac)(6)(CH3OH)](3+) (ac = acetate, 4-pic = 4-methylpyridine, pz = pyrazine). In this complex, the labile CH3OH ligand can be displaced by the bridging pyrazine ligand of [Ru3O(ac)(6)(pz)3](0), leading to the self-assembly of the [{[Ru3O(ac)(6)(4-pic)(2)(pz)](2)-mu(2)-Ru3O(ac)(6)(pz)}(3)- mu(3)-Ru3O(ac)(6)](n+) dendrimer containing 30 ruthenium atoms. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present investigation was designed to investigate the effect of the diterpene ent-pimara-8(14),15-dien-19-oic acid (pimaradienoic acid, PA) on smooth muscle extracellular Ca2+ influx. To this end, the effect of PA on phenylephrine- and KCI-induced increases in cytosolic calcium concentration ([Ca2+](c)) measured by the variation in the ratio of fluorescence intensities (R340/ 380 nm) of Fura-2, was analysed. Whether bolus injection of PA could induce hypotensive responses in conscious normotensive rats was also evaluated. PA inhibited the contraction induced by phenylephrine (0.03 or 10 mu mol L-1) and KCI (30 or 90 mmol L-1) in endothelium-denuded rat aortic rings in a concentration dependent manner. Pre-treatment with PA (110, 100, 200 mu mol L-) attenuated the contraction induced by CaCl2 (0.5 nmol L(-)1 or 2.5 mmol L-1) in denuded rat aorta exposed to Ca2+- free medium containing phenylephrine (0.1 mu mol L-1) or KCI (30 mmol L-1). Interestingly, the inhibitory effect displayed by PA on CaCl2-induced contraction was more pronounced when KCI was used as the stimulant. Phenylephrine- and KCI-induced increases in (Ca2+,](c) were inhibited by PA. Similarly, verapamil, a Ca2+-channel blocker, also inhibited the increase in [Ca2+](c) induced by either phenylephrine or KCI. Finally, bolus injection of PA (1-15 mg kg(-1)) produced a dose-dependent decrease in mean arterial pressure in conscious normotensive rats. The results provide the first direct evidence that PA reduces vascular contractility by reducing extracellular Ca2+ influx through smooth muscle cellular membrane, a mechanism that could mediate the hypotensive response induced by this diterpene in normotensive rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the participation of mu-opioid-receptor activation in body temperature (T-b) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic D-Phe-Cys-Try-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 0.1-1.0 mu g) reduced fever induced by LPS (5.0 mu g/kg) but did not change Tb at ambient temperatures of either 20 C or 28 C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0 -10.0 mg/kg, 3.0 -30.0 mu g, and 1 -100 ng, respectively) produced a dose-dependent increase in Tb. Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 mu g icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 mu g), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2 alpha) (500.0 ng) but not the fever induced by IL-1 beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2 alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE2 levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1 beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 mu M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca(2+) efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP(+) transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scorpion envenomation induces a systemic immune response, and neurotoxins of venom act on specific ion channels, modulating neurotransmitter release or activity. However, little is known about the immunomodulatory effects of crude venom from scorpion Tityus serrulatus (TsV) or its toxins (Ts1, Ts2 and Ts6) in combination with lipopolysaccharide (LPS). To investigate the immunomodulatory effects of TsV and its toxins (Ts1, Ts2 and Ts6), J774.1 cells were stimulated with different concentrations (25, 50 and 100 mu g/mL) of venom or toxins pre-stimulated or not with LPS (0.5 mu g/mL). Macrophage cytotoxicity was assessed, and nitric oxide (NO) and cytokine production were analyzed utilizing the culture supernatants. TsV and its toxins did not produce cytotoxic effects. Depending on the concentrations used, TsV, Ts1 and Ts6 stimulated the production of NO, interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha in J774.1 cells, which were enhanced under LPS co-stimulation. However, LPS + Ts2 inhibited NO, IL-6 and TNF-alpha production, and Ts2 alone stimulated the production of IL-10, suggesting an anti-inflammatory activity for this toxin. Our findings are important for the basic understanding of the mechanisms involved in macrophage activation following envenomation: additionally, these findings may contribute to the discovery of new therapeutic compounds to treat immune-mediated diseases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 mu M. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.