932 resultados para MECHANICAL PROPERTY EXTRACTIONS
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The nanoindentation technique has recently been utilized for quantitative evaluation of the mechanical properties of molecular materials successfully, including their temperature (T) dependence. In this paper, we examine how the mechanical anisotropy varies with T in saccharin and L-alanine single crystals. Our results show that elastic modulus (E) decreases linearly in all the cases examined, with the T-dependence of E being anisotropic. Correspondence between directional dependence of the slopes of the E vs. T plots and the linear thermal expansion coefficients was found. The T-dependence of hardness (H), on the other hand, was found to be nonlinear and significant when (100) of saccharin and (001) of L-alanine are indented. While the anisotropies in E and H of saccharin and E of L-alanine enhance with T, the anisotropy in H of L-alanine was found to reduce with T. Possible mechanistic origins of these variations are discussed.
Resumo:
The work reports the preparation of fly ash cenospheres bearing polymer composites, using various polymer matrix materials namely, low density polyethylene, high density polyethylene, polystyrene and polymethylmethacrylate followed by evaluation of properties. The composites are synthesized by including about 18% by weight fly ash cenospheres, into various polymer matrices using brabender facility in the temperature range 120-160 degrees C and at a mixing pressure of 50 MPa. Subsequently, they are cast into sheets through compression moulding. The test samples, made from the sheets, are characterized for physical as well as mechanical properties such as density, hardness, compression strength, impact response, wear and friction. The investigation reveals that the addition of fly ash cenospheres to various polymer matrices results in reduction of density. Further, improvements in the slide wear resistance and decrease in the co-efficient of friction values are noticed. As for interpreting the slide wear data, recourse to examination under scanning electron microscope is made in this paper. As regards the mechanical properties, hardness increases while the compression strength and impact energy decreases with inclusion of cenospheres in all the four types of samples investigated.
Resumo:
Mechanical properties of single-walled carbon nanohoms (SWNH) and SWNH plus few-layer graphene (EG)-reinforced poly(vinyl alcohol) (PVA) matrix composites have been measured using the nanoindentation technique. The elastic modulus (E) and hardness (H) of PVA were found to improve by similar to 315% and similar to 135%, respectively, upon the addition of just 0.4 wt % SWNH. These properties were found to be comparable to those obtained upon the addition of 0.2 wt % single-walled nanotubes (SWNT) to PVA. Furthermore, upon binary addition of 0.2 wt % EG and 0.4 wt % SWNH to PVA, benefits in the form of similar to 400% and similar to 330% synergy in E and H, respectively, were observed, along with an increased resistance to viscoelastic deformation. The reasons for these improvements are discussed in terms of the dimensionality of nanocarbon, the effectiveness of nanocarbon and polymer matrix interaction, and the influence of nanocarbon on the degree of crystallinity of the polymer. The results from SWNH reinforcement in this study demonstrate the scope for a novel and, in contrast to SWNT composites, a commercially feasible opportunity for strengthening polymer matrices.
Resumo:
An elastic organic crystal, 2,6-dichlorobenzylidine-4-fluoro-3-nitroaniline (DFNA), which also shows thermosalient behavior, is studied. The presence of these two distinct properties in the same crystal is unusual and unprecedented because they follow respectively from isotropy and anisotropy in the crystal packing. Therefore, while both properties lead from the crystal structure, the mechanisms for bending and thermosalience are quite independent of one another. Crystals of the low-temperature (a) form of the title compound are bent easily without any signs of fracture with the application of deforming stress, and this bending is within the elastic limit. The crystal structure of the a-form was determined (P2(1)/c, Z = 4, a = 3.927(7) angstrom, b = 21.98(4) angstrom, c = 15.32(3) angstrom). There is an irreversible phase transition at 138 degrees C of this form to the high-temperature beta-form followed by melting at 140 degrees C. Variable-temperature X-ray powder diffraction was used to investigate the structural changes across the phase transition and, along with an FTIR study, establishes the structure of the beta-form. A possible rationale for strain build-up is given. Thermosalient behavior arises from anisotropic changes in the three unit cell parameters across the phase transition, notably an increase in the b axis parameter from 21.98 to 22.30 angstrom. A rationale is provided for the existence of both elasticity and thermosalience in the same crystal. FTIR studies across the phase transition reveal important mechanistic insights: (i) increased pi...pi repulsions along 100] lead to expansion along the a axis; (ii) change in alignment of C-Cl and NO2 groups result from density changes; and (iii) competition between short-range repulsive (pi...pi) interactions and long-range attractive dipolar interactions (C-Cl and NO2) could lie at the origin of the existence of two distinctive properties.
Resumo:
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Resumo:
Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon Carbon covalent bond and two types of Carbon Carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness's are assigned to spring elements in the finite element model of the CNT. The geometry of CNT is built using a macro that is developed for the finite element analysis software. The finite element model of the CNT is constructed, appropriate boundary conditions are applied and the behavior of mechanical properties of CNT is studied.
Resumo:
A supercritical CO2 test facility is currently being developed at Indian Institute of Science, Bangalore, India to analyze the performance of a closed loop Brayton cycle for concentrated solar power (CSP) generation. The loop has been designed for an external heat input of 20 kW a pressure range of 75-135 bar, flow rate of 11 kg/min, and a maximum cycle temperature of 525 degrees C. The operation of the loop and the various parametric tests planned to be performed are discussed in this paper The paper addresses various aspects of the loop design with emphasis on design of various components such as regenerator and expansion device. The regenerator design is critical due to sharp property variations in CO2 occurring during the heat exchange process between the hot and cold streams. Two types of heat exchanger configurations 1) tube-in-tube (TITHE) and 2) printed circuit heat exchanger (PCHE) are analyzed and compared. A PCHE is found to be similar to 5 times compact compared to a TITHE for identical heat transfer and pressure drops. The expansion device is being custom designed to achieve the desired pressure drop for a range of operating temperatures. It is found that capillary of 5.5 mm inner diameter and similar to 2 meter length is sufficient to achieve a pressure drop from 130 to 75 bar at a maximum cycle temperature of 525 degrees C.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We establish zero-crossing rate (ZCR) relations between the input and the subbands of a maximally decimated M-channel power complementary analysis filterbank when the input is a stationary Gaussian process. The ZCR at lag is defined as the number of sign changes between the samples of a sequence and its 1-sample shifted version, normalized by the sequence length. We derive the relationship between the ZCR of the Gaussian process at lags that are integer multiples of Al and the subband ZCRs. Based on this result, we propose a robust iterative autocorrelation estimator for a signal consisting of a sum of sinusoids of fixed amplitudes and uniformly distributed random phases. Simulation results show that the performance of the proposed estimator is better than the sample autocorrelation over the SNR range of -6 to 15 dB. Validation on a segment of a trumpet signal showed similar performance gains.
Resumo:
Poly(vinyl butyral) - MMT clay nanocomposites were synthesized in situ with three different degrees of acetalization and with varying clay content for each vinyl butyral polymer ratio. The clay nano-platelet galleries were expanded, as determined by X-ray diffraction and TEM analysis. The glass transition temperature of the polymer nanocomposites were found to be similar to 56 degrees C and similar to 52 degrees C for the neat polymer and the 4% clay loaded samples, respectively. The 4 wt% clay loaded film showed higher strength and low strain to failure. The dynamic mechanical analysis also confirmed the improved stability of the matrix. The matrix with 0.5 butyral to alcohol ratio for 4 wt% clay exhibited good water vapor transmission compared to all other compositions. The encapsulated devices with 2.5 and 4 wt% clay loaded films increases the device life time and the efficiencies of these films were 50% higher than their encapsulated pristine polymer films. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we integrate two or more compliant mechanisms to get enhanced functionality for manipulating and mechanically characterizing the grasped objects of varied size (cm to sub-mm), stiffness (1e5 to 10 N/m), and materials (cement to biological cells). The concepts of spring-lever (SL) model, stiffness maps, and non-dimensional kinetoelastostatic maps are used to design composite and multi-scale compliant mechanisms. Composite compliant mechanisms comprise two or more different mechanisms within a single elastic continuum while multi-scale ones possess the additional feature of substantial difference in the sizes of the mechanisms that are combined into one. We present three applications: (i) a composite compliant device to measure the failure load of the cement samples; (ii) a composite multi-scale compliant gripper to measure the bulk stiffness of zebrafish embryos; and (iii) a compliant gripper combined with a negative-stiffness element to reduce the overall stiffness. The prototypes of all three devices are made and tested. The cement sample needed a breaking force of 22.5 N; the zebrafish embryo is found to have bulk stiffness of about 10 N/m; and the stiffness of a compliant gripper was reduced by 99.8 % to 0.2 N/m.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 degrees C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)(3)), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)(4)), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films. (C) 2015 Elsevier B.V. All rights reserved.