972 resultados para Living Radical Polymerization
Resumo:
Stereospecific polymerization of styrene was catalyzed by homogeneous neodymium phosphonate [Nd(P-507)(3)]-H2O-Al(i-Bu)(3) catalytic system. The polymer was separated into isotactic polystyrene and atactic polystyrene by extracting the latter with boiling 2-butanone. The conversion of styrene and the yield of isotactic polystyrene (IY) were influenced by the [H2O]/[Al(i-Bu)(3)] mole ratio and the solvent polarity. The reaction is first order with respect to monomer at 70 degrees C.
Resumo:
A series of macrocyclic arylate dimers have been selectively synthesized by an interfacial polycondensation of o-phthaloyldichloride with bisphenols. A combination of GPC, FAB-MS, H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
A mixture of triphenylmethyl methacrylate (TrMA) and methyl methacrylate (MMA) was polymerized with chiral anionic initiator, such as fluorenyl lithium-(-)-sparteine [FlLi-(-)-Sp] and fluorenyl lithium-(+)-2S,3S-dimethoxy-1,4-bis(dimethylamino) butane [FlLi-(+)-DDB] in toluene at -78 degrees C. The results show that after the stable helix formed, when FlLi-(+)-DDB was used as the initiator, TrMA and MMA could be copolymerized, whereas when FlLi-(-)-Sp was used, the two monomers tended to be selectively polymerized into two polymers. This phenomenon has been explained by the existence of helix-selective polymerization. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of new macrocyclic aromatic esters have been efficiently synthesized from o-phthaloyl dichloride and various bisphenols, and unambiguously characterized by a combination of GPC, MS(FAB), FTIR and NMR. These macrocyclic oligomers undergo facile ring-opening polymerization in the presence of anionic initiators to give high molecular weight polyarylates.
Resumo:
A series of macrocyclic arylate dimers have been efficiently synthesized by an interfacial polycondensation of o-phthaloyl dichloride with bisphenols. A combination of GPC, FAB MS, and H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of one such macrocycle reveals no severe strain on the cyclic structure, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
Oxidative polymerization of aniline in the presence of H2O2/Fe2+/HCl was carried out, and polyaniline obtained showed similar molecular structure compared to that prepared in (NH4)(2)S2O8 system.
Resumo:
Laser desorption ionization time-of-flight mass spectrometry has been used to study the water-soluble multi-hydroxyl C-60 derivatives - fullerenols. The mass spectra exhibit unusual polymerization behavior of fullerenols. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Three new lanthanide (Ln)-alkylaluminium (Al) bimetallic complexes with the formula [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AIR(2) . 2THF](2) (Ln = Nd, Y, R=i-C4H9 (i-Bu); Ln=Eu, R=C2H5(Et); THF=tetrahydrofuran) were synthesized by the reaction of Ln(CF,CO,), (Ln=Nd, Y) with HAI (i-Bu)(2) and of Eu(CF3CO2)(3) with AlEt(3), respectively. Their crystal structures were determined by X-ray diffraction at 233 K. [(mu-CF3CO2)(2)Nd (mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Nd-Al) and [(mu-CF3CO2)(2)Y(mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Y-Al) are isomorphous and crystallize in space group
with a=12.441(3) Angstrom [12.347(5) Angstrom for Y-Al], b=12.832(3) Angstrom [12.832(4) Angstrom], c=11.334(3) Angstrom [11.292(8) Angstrom], alpha=104.93 (2)degrees [104.45(4)degrees], beta=98.47(2)degrees [98.81(4)degrees], gamma=64.60(2)degrees [64.30(3)degrees], R=0.519 [0.113], R(w)=0.0532 [0.110], Z=1 and [(mu-CF3CO2)(2)Eu(CF3CHO2)AlEt(2) . 2THF](2)(Eu-Al) in space group P2(1)/n with a=11.913(6) Angstrom, b=14.051(9) Angstrom, c=17.920(9) Angstrom, alpha=101.88(11)degrees, beta=gamma=90 degrees, R=0.0509, R(w)=0.0471 and Z=2. The six CF3CO2- (including CF3CHO2-) of each complex, among which pairs are equivalent, coordinated to Ln and Al in three patterns: (A) the two oxygen atoms in one of the three CF3CO2- type coordinated to two different Ln; (B) the two oxygen atoms in the second of CF3CO2- type coordinated to Ln and Al, respectively; (C) one of the two oxygen atoms in the third CF3CO2- type bidentately coordinated to two Ln and another oxygen coordinated to Al and one of the two Ln, respectively. Unlike types A and B, in type C the carboxyl carbon with a hydrogen atom bonded to it was found to appear as an sp(3)-hybridized configuration rather than an sp(2)-one. 1D and 2D NMR results further confirmed the existence of such a disproportionated CF3CHO2- ligand. Methyl methacrylate (MMA) and epichlorohydrin (ECH) could be polymerized by Y-Al or Eu-Al as a single-component catalyst and highly syndiotactic poly(MMA) was obtained. THF could also be polymerized by Y-Al in the presence of a small amount of ECH.
Resumo:
A series of vinylidene chloride (VDC) copolymers with methyl acrylate (MA) or butyl acrylate (BA) as comonomer (not more than 10%) was prepared by free-radical suspension copolymerization. The effects of comonomer structure, copolymer composition, and reaction condition (such as polymerization temperature on crystallinity) and thermal properties (such as melting temperature and decomposition temperature) were investigated. All VDC/acrylics copolymers studied here are semicrystalline and have more than one crystalline structure. The melting temperature of MA/VDC copolymers is decreased progressively with increase in MA content. The decomposition temperature of MA/VDC copolymers is slight increased gradually with increase in MA content. MA/VDC copolymers have lower melting temperature compared with BA/VDC copolymers with same VDC composition. The melting temperature of VDC copolymers increases with increase in polymerization temperature and decomposition temperature of those is almost independent of polymerization temperature. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Radical copolymerisations of di-iso-propyl fumarate (DiPF) with di-n-propyl fumarate (DnPF), di-n-butyl fumarate (DnBF), di-n-amyl-fumarate (DnAF), di-n-heptyl fumarate (DnHF) and di-ethyl-hexyl fumarate (DEHF) were studied. The reactivity ratios for the following monomer pairs, DiPF/DnPF, DiPF/DnBF, DiPF/DnAF, DiPF/DnHF and DiPF/DEHF, were determined. The structures of the copolymers were examined by H-1-NMR and WAXD. Some properties of the copolymers were examined.
Resumo:
Water-soluble polyhydroxylated fullerene derivatives (fullerenol) were synthesized, and their scavenging ability for (OH)-O-.-radical was studied by the combination of ESR spectroscopy and spin-trapping technique with phenyl-t-butyl-nitrone. It was found that fullerenols showed an excellent efficiency in eliminating (OH)-O-. free radicals generated by UV photolysis of H2O2. At an applied fullerenol concentration of 0, 3 mg/mL in the final solution, a radical scavenging efficiency of approximate 95% was achieved, revealing the potential use of these compounds as novel potent free radical scavengers in biological systems.
Resumo:
An investigation has been undertaken by use of ESCA in the characterization of the central metal(Zr) of dichlorozirconocene/methylaluminoxane homogeneous olefin polymerization catalyst. The change of electron density shown by a shift in ESCA signals (181.8 - 182.7eV) indicates that the catalytic species are ''cation-like''. Within the range of detecting sensitivity of ESCA spectrometer, only a part of the new catalytic derivative was formed. The influence of complexion time and Al : Zr ratio on the formation of the catalytic zirconocene cation has also been investigated.
Resumo:
Poly(styrene-co-acrylamide) (PSAm)-titanium complexes (PSAm . Ti) were prepared and characterized. It is found that the coordination number of acrylamide (Am) to Ti in the complexes is strongly dependent on Am content in PSAm, but not on [Am]/[Ti] ratio in the feed. The infrared and x-ray photoelectron spectra suggest that the polymer-supported complexes possess the structure [GRAPHICS] The catalytic behavior of the complexes in styrene polymerization is described. The catalytic activity is markedly affected by [Al]/[Ti] ratio in the complexes. C-13 NMR, IR, and DSC data indicate that the polystyrene obtained with PSAm . Ti/MAO (MAO = methylaluminoxane) is highly syndiotactic. Use of Et(3)Al and i-Bu(3)Al in place of MAO gives atactic polystyrene. The activities of the various aluminum compounds used as the cocatalysts decrease in the order: MAO > Et(3)Al > i-Bu(3)Al. The polymer-supported complexes show relatively high activity even after the complexes had been exposed to air for 19 h or higher polymerization temperature. (C) 1996 John Wiley & Sons, Inc.