973 resultados para Little Ice Age
Resumo:
One of the primary objectives of Leg 120 was to obtain a high-resolution Neogene stratigraphic section from the Kerguelen Plateau. Site 751, located in the central part of the Raggatt Basin on the Southern Kerguelen Plateau in 1633.8 m of water (57°43.56'S; 79°48.89'E), was selected as the dedicated Neogene site for this objective. High-resolution sampling at Site 751 was used to delineate in detail the Neogene ice-rafted debris (IRD) occurrences on the Kerguelen Plateau. The oldest IRD found at Site 751 was approximately 9.9 Ma, and it was not until approximately 8.5 Ma that significant concentrations of IRD were detected. The first major IRD event at this site occurred in the uppermost Miocene between 6.0 and 5.5 Ma. During this time period, a general climatic cooling and glacial expansion occurred on Antarctica. The late Miocene IRD event was followed by a continuous episode of elevated IRD deposition in the lowermost Pliocene between 4.5 and 4.1 Ma. The 0.4-m.y. duration and the timing of the early Pliocene IRD event on the Kerguelen Plateau corresponds with IRD fluxes observed on the Falkland Plateau and in the Weddell Abyssal Plain. This correspondence of data indicates that a major global climatic event occurred during the early Pliocene. The East Antarctic Ice Sheet may have experienced deglaciation between 4.5 and 4.1 Ma and, as a result, released large volumes of sediment-laden ice into the Southern Ocean.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
Past sea surface temperature (SST) evolution in the Alboran Sea (western Mediterranean) during the last 50,000 years has been inferred from the study of C37 alkenones in International Marine Global Change Studies MD952043 core. This record has a time resolution of ~200 years allowing the study of millennial-scale and even shorter climatic changes. The observed SST curve displays characteristic sequences of extremely rapid warming and cooling events along the glacial period. Comparison of this Alboran record with delta18O from Greenland ice (Greenland Ice Sheet Project 2 core) shows a strong parallelism between these SST oscillations and the Dansgaard-Oeschger events. Five prominent cooling episodes standing out in the SST profile are accompanied by an anomalous high abundance of Neogloboquadrina pachyderma sinistral which is confined to the duration of these cold intervals. These features and the isotopic record reflect drastic changes in the surface hydrography of the Alboran Sea in association with Heinrich events Hl-5.
Resumo:
Calcium carbonate precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice, although it is hypothesized that high quantities of dissolved organic matter and/or phosphate (common in sea ice) may inhibit its formation. In this quantitative study of hydrous calcium carbonate as ikaite, sea ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during two expeditions, one in the East Antarctic sector and the other off Terre Adélie. Samples were analysed for CaCO3, salinity, dissolved organic carbon/nitrogen, inorganic phosphate, and total alkalinity. No relationship between these parameters and CaCO3 precipitation was evident. Ikaite was found mostly in the uppermost layers of sea ice with maximum concentrations of up to 126 mg ikaite per litre melted sea ice being measured, although both the temporal and horizontal spatial distributions of ikaite were highly heterogeneous. The precipitate was also found in the snow on top of the sea ice at some of the sampling locations.
Resumo:
Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene-Kyuele in the NE Siberian Arctic (latitude 71°17'N, longitude 125°34'E). The water-body displays thaw-lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5-m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.