998 resultados para Linear Capillary Instability
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
A model structure comprising a wavelet network and a linear term is proposed for nonlinear system identification. It is shown that under certain conditions wavelets are orthogonal to linear functions and, as a result, the two parts of the model can be identified separately. The linear-wavelet model is compared to a standard wavelet network using data from a simulated fermentation process. The results show that the linear-wavelet model yields a smaller modelling error when compared to a wavelet network using the same number of regressors.
Resumo:
The present study investigates the initiation of precipitating deep convection in an ensemble of convection-resolving mesoscale models. Results of eight different model runs from five non-hydrostatic models are compared for a case of the Convective and Orographically-induced Precipitation Study (COPS). An isolated convective cell initiated east of the Black Forest crest in southwest Germany, although convective available potential energy was only moderate and convective inhibition was high. Measurements revealed that, due to the absence of synoptic forcing, convection was initiated by local processes related to the orography. In particular, the lifting by low-level convergence in the planetary boundary layer is assumed to be the dominant process on that day. The models used different configurations as well as different initial and boundary conditions. By comparing the different model performance with each other and with measurements, the processes which need to be well represented to initiate convection at the right place and time are discussed. Besides an accurate specification of the thermodynamic and kinematic fields, the results highlight the role of boundary-layer convergence features for quantitative precipitation forecasts in mountainous terrain.
Resumo:
Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.
Resumo:
We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-beta amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.
Resumo:
Sting jets are transient mesoscale jets of air that descend from the tip of the cloud head towards the top of the boundary layer in severe extratropical cyclones and can lead to damaging surface wind gusts. This recently identified jet is distinct from the well-documented jets associated with the cold and warm conveyor belts. One mechanism proposed for their development is the release of conditional symmetric instability (CSI). Here the spatial distribution and temporal evolution of several CSI diagnostics in four severe storms are analysed. A sting jet has been identified in three of these storms; for comparison, we also analysed one storm that did not have a sting jet, even though it hadmany of the apparent features of sting-jet storms. The sting-jet storms are distinct from the non-sting-jet storms by having much greater andmore extensive conditional instability (CI) and CSI. CSI is released by ascending air parcels in the cloud head in two of the sting-jet storms and by descending air parcels in the other sting-jet storm. By contrast, only weak CI to ascending air parcels is present at the cloud-head tip in the non-sting-jet storm. CSI released by descending air parcels, as diagnosed by decaying downdraught slantwise convective available potential energy (DSCAPE), is collocated with the sting jets in all three sting-jet storms and has a localisedmaximum in two of them. Consistent evolutions of saturated moist potential vorticity are found.We conclude that CSI release has a role in the generation of the sting jet, that the sting jet may be driven by the release of instability to both ascending and descending parcels, and that DSCAPE could be used as a discriminating diagnostic for the sting jet based on these four case-studies.
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.