956 resultados para Lift (Aerodynamics)
Resumo:
At head of title: Project SQUID, a cooperative program of fundamental research as related to jet propulsion, Office of Naval Research, Department of the Navy. Contract Nonr 1858 (25), NR-098-038.
Resumo:
"Interim report for period January 1976-February 1976."
Resumo:
"AFOSR-TN-56-236."
Resumo:
"Work performed under contract DA-30-069-ORD-1955, administered by Bell Telephone Laboratories, Whippany, N. J."
Resumo:
At head of title: Space Sciences Laboratory. Aerophysics Section.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In cold-chamber high-pressure die castings (HPDC), the microstructure consists of coarse externally solidified crystals (ESCs) that are commonly observed in the central region of cross sections. In the present work, controlled laboratory scale casting experiments have been conducted with particular emphasis on the flow and solidification conditions. An A356 aluminum alloy was used to produce castings by pouring semi-solid metal through a steel die. Microstructures similar to those encountered in HPDC have been produced and the resulting microstructure is found to depend on the melt and die temperature: (1) the fraction of ESCs determines the extent of migration to the central region; (2) a maximum packing determines the area fraction of ESCs in the center; and (3) the die temperature affects the position of the ESCs-a higher die temperature can induce a displaced ESC distribution. It is found that the n-figration of crystals to the central region requires a flow, which is constrained at all melt/die interfaces. Furthermore, potential lift mechanisms are discussed. An assessment of the Saffman lift force on individual particles shows it has no significant effect on the migration of ESCs.
Resumo:
Although safety is recognized as a critical issue in functional capacity evaluations (FCEs), it has rarely been investigated. This paper reports on the findings of a study which examined safety aspects of a new approach to FCE. Fourteen rehabilitation clients with chronic back pain participated in the study. Aspects examined included the pre-FCE screening procedures, the monitoring of performance and safety during the FCE, and the end of FCE measures and follow-up procedures. Support was found for the screening procedures of the approach, particularly blood pressure measurement, and for the combined approach to monitoring of the persons performance from biomechanical, physiological and psychophysical perspectives. Issues for FCE safety in general are identified and discussed, including the importance of screening procedures to determine readiness for FCEs and the issue of load handling in FCEs, especially in relation to clients with chronic back pain.
Resumo:
Background: The age-related loss of muscle power in older adults is greater than that of muscle strength and is associated with a decline in physical performance. Objective: To investigate the effects of a short-term high-velocity varied resistance training programme on physical performance in healthy community-dwelling adults aged 60-80 years. Methods: Subjects undertook exercise (EX; n = 15) or maintained customary activity (controls, CON; n = 10) for 8 weeks. The EX group trained 2 days/week using machine weights for three sets of eight repetitions at 35, 55, and 75% of their one-repetition maximum (the maximal weight that an individual can lift once with acceptable form) for seven upper- and lower-body exercises using explosive concentric movements. Results: Fourteen EX and 10 CON subjects completed the study. Dynamic muscle strength significantly increased (p = 0.001) in the EX group for all exercises (from 21.4 +/- 9.6 to 82.0 +/- 59.2%, mean +/- SD) following training, as did knee extension power (p < 0.01). Significant improvement occurred for the EX group in the floor rise to standing (10.4 &PLUSMN; 11.5%, p = 0.004), usual 6-metre walk (6.6 &PLUSMN; 8.2%, p = 0.010), repeated chair rise (10.4 &PLUSMN; 15.6%, p = 0.013), and lift and reach (25.6 &PLUSMN; 12.1%, p = 0.002) performance tasks but not in the CON group. Conclusions: Progressive resistance training that incorporates rapid rate-of-force development movements may be safely undertaken in healthy older adults and results in significant gains in muscle strength, muscle power, and physical performance. Such improvements could prolong functional independence and improve the quality of life. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Conclusion. The new Provox(R) NID (TM) non- indwelling voice prosthesis investigated in this study provides a good option for laryngectomized patients using non- indwelling voice prostheses and can potentially improve safety and increase patients' satisfaction with their voice and speech. Objective. To investigate the feasibility of and patient satisfaction with the Provox NID non- indwelling voice prosthesis. Material and methods. Pre- and post- study questionnaires were used to evaluate the patients' former voice prosthesis and the Provox NID voice prosthesis. In addition, measurements of pull- out force, maximum phonation time and loudness were made for both voice prostheses. In vitro measurements of airflow characteristics were also made. Following a 6- week trial, all patients provided feedback on the new voice prosthesis and the results were used to further improve the Provox NID. This final version of the new voice prosthesis was subsequently trialled and evaluated by 10 patients 6 months later. Results. Overall results showed that patient satisfaction with the Provox NID non- indwelling voice prosthesis was favourable. The pull- out force for the new prosthesis was significantly higher than that for the formerly used prosthesis and its aerodynamic characteristics were better.
Resumo:
Numerical simulations of turbulent driven flow in a dense medium cyclone with magnetite medium have been conducted using Fluent. The predicted air core shape and diameter were found to be close to the experimental results measured by gamma ray tomography. It is possible that the Large eddy simulation (LES) turbulence model with Mixture multi-phase model can be used to predict the air/slurry interface accurately although the LES may need a finer grid. Multi-phase simulations (air/water/medium) are showing appropriate medium segregation effects but are over-predicting the level of segregation compared to that measured by gamma-ray tomography in particular with over prediction of medium concentrations near the wall. Further, investigated the accurate prediction of axial segregation of magnetite using the LES turbulence model together with the multi-phase mixture model and viscosity corrections according to the feed particle loading factor. Addition of lift forces and viscosity correction improved the predictions especially near the wall. Predicted density profiles are very close to gamma ray tomography data showing a clear density drop near the wall. The effect of size distribution of the magnetite has been fully studied. It is interesting to note that the ultra-fine magnetite sizes (i.e. 2 and 7 mu m) are distributed uniformly throughout the cyclone. As the size of magnetite increases, more segregation of magnetite occurs close to the wall. The cut-density (d(50)) of the magnetite segregation is 32 gm, which is expected with superfine magnetite feed size distribution. At higher feed densities the agreement between the [Dungilson, 1999; Wood, J.C., 1990. A performance model for coal-washing dense medium cyclones, Ph.D. Thesis, JKMRC, University of Queensland] correlations and the CFD are reasonably good, but the overflow density is lower than the model predictions. It is believed that the excessive underflow volumetric flow rates are responsible for under prediction of the overflow density. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The development of scramjet propulsion for alternative launch and payload delivery capabilities has been composed largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, a ballistic reentry vehicle experiment called HyShot was devised to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.34 and the other unfueled. Of the two flights conducted, HyShot 1 failed to reach the desired altitude due to booster failure, whereas HyShot 2 successfully accomplished both the desired trajectory and satisfactory scramjet operation. Postflight data analysis of HyShot 2 confirmed the presence of supersonic combustion during the approximately 3 s test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some preflight shock tunnel tests was observed.
Resumo:
The development of new methods of producing hypersonic wind-tunnel flows at increasing velocities during the last few decades is reviewed with attention to airbreathing propulsion, hypervelocity aerodynamics and superorbital aerodynamics. The role of chemical reactions in these flows leads to use of a binary scaling simulation parameter, which can be related to the Reynolds number, and which demands that smaller wind tunnels require higher reservoir pressure levels for simulation of flight phenomena. The use of combustion heated vitiated wind tunnels for propulsive research is discussed, as well as the use of reflected shock tunnels for the same purpose. A flight experiment validating shock-tunnel results is described, and relevant developments in shock tunnel instrumentation are outlined. The use of shock tunnels for hypervelocity testing is reviewed, noting the role of driver gas contamination in determining test time, and presenting examples of air dissociation effects on model flows. Extending the hypervelocity testing range into the superorbital regime with useful test times is seen to be possible by use of expansion tube/tunnels with a free piston driver.
Resumo:
We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the techniques of Aharonov and Susskind [Phys. Rev. 155, 1428 (1967)], explicitly violates the commonly accepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent superpositions of states of differing particle statistics. In this case, the reference frame is realized by a multimode state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry, including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this proposed experiment to produce well-defined relative phases between two distinct systems each described by a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding requirements to fully lift the univalence superselection rule.
Resumo:
We demonstrate an end-to-end computational model of the HEG shock tunnel as a way to extract more precise test flow conditions and as a way of getting predictions of new operating conditions. For a selection of established operating conditions, the L1d program was used to simulate the one-dimensional gas-dynamic processes within the whole of the facility. The program reproduces the compression tube performance reliably and, with the inclusion of a loss factor near the upstream-end of the compression tube, it provides a good estimate of the equilibrium pressure in the shock-reflection region over the set of six standard operating conditions for HEG.