924 resultados para Leaf-venation
Resumo:
Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens feed daily with leaves of Ipomoea batatas showed ant mortality and a significant decrease in the size of the fungal garden after the second week, with complete depletion of nests after 5 weeks of treatment. The mean oxygen consumption rate of these ants was higher than the control (ants collected from nests feed with leaves of Eucalyptus alba), suggesting a physiological action of the leaves of I. batatas on the ants in addition to the effect of inhibiting the growth of the fungal garden.
Resumo:
Four strains of a novel yeast species were isolated from laboratory nests of the leaf-cutting ant Atta sexdens in Brazil. Three strains were found in older sponges and one was in a waste deposit in the ant nests. Sequencing of the D1/D2 region of the large-subunit rRNA gene showed that the novel species, named Sympodiomyces attinorum sp. nov., is phylogenetically related to Sympodiomyces parvus. Unlike Sympodiomyces parvus, Sympodiomyces attinorum can ferment glucose, assimilate methyl alpha-D-glucoside, salicin and citrate, and grow at 37 degreesC, thus enabling these two species to be distinguished. Differentiation from other related species is possible on the basis of other growth characteristics. The type strain of Sympodiomyces attinorum is UNESP-S156(T) (=CBS 9734(T)=NRRL Y-27639(T)).
Resumo:
The focus of this study was the identification of compounds from plant extracts for use in crop protection. This paper reports on the toxic activity of fractions of leaf extracts of Ricinus communis L (Euphorbiaceae) and isolated active compounds in the leaf-cutting ant Atta sexdens rubropilosa Forel and its symbiotic fungus Leucoagaricus gongylophorus (Singer) Moller. The main compounds responsible for activity against the fungus and ant in leaf extracts of R communis were found to be fatty acids for the former and ricinine for the ants. (C) 2004 Society of Chemical Industry.
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
Andean montane forests are one of the most diverse ecosystems on Earth, but are also highly vulnerable to climate change. Therefore, the link between plant distribution and ecosystem productivity is a critical point to investigate in these ecosystems. Are the patterns in productivity observed in montane forest due to species turnover along the elevational gradients? Methodological constraints keep this question unanswered. Also, despite their importance, belowground biomass remains poorly quantified and understood. I measured two plant functional traits in seedlings, root:shoot ratio and specific leaf area, to identify different strategies in growth and biomass allocation across elevations. A tradeoff in specific leaf area with elevation was found in only one species, and no generalized directional change was detected with elevations for root:shoot ratio. Lack of information for the ontogeny of the measured plant traits could confounding the analysis.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
The effects of climate change can result in dramatic consequences in specific ecosystems such as montados that are seriously threatened by the absence of cork and holm oak (Quercus suber and Q. rotundifolia) natural regeneration. Shrubs of the genus Cistus, which are among the most important elements of encroached montados, seem to promote soil rehabilitation and enhance oak regeneration (Simões et al. 2009). In this context, we compared the life strategies and evaluated the potential ability of Cistus species to adapt to the increasing drought expected for the Mediterranean region, and thus their role on the sustainability of cork oak montados.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.
Resumo:
A cultura da banana tem baixa diversidade genética, tornando a espécie susceptível a doenças dizimadoras como a Sigatoka negra. No entanto, a adoção de novas variedades necessita de avaliações agronômicas e físico-químicas. Neste estudo, as variedades de banana, resistentes à Sigatoka negra, foram caracterizadas e comparadas com a variedade tradicional (Grand Naine). Cada variedade foi avaliada considerando-se critérios relevantes para a agroindústria, como pH, sólidos solúveis totais, acidez total titulável, relação SST/ATT, açúcares totais, açúcares redutores e não redutores, umidade, sólidos totais e rendimento no processamento. A variedade Thap Maeo apresentou-se como a variedade mais potencial para substituição da Gran Naine na indústria, com altos teores de sólidos solúveis totais, açúcares redutores, açúcares totais e umidade. As variedades Caipira e FHIA 2 também podem substituir a Grand Naine. Na análise de agrupamentos, verificou-se que a variedade Grand Naine esteve muito próxima das variedades do subgrupo Gros Michel (Bucaneiro, Ambroisa e Calipso) e também da variedade Caipira, apresentando no seu genoma o grupo AAA. Conclui-se que há opções de variedades resistentes para substituição da variedade tradicional, nas regiões afetadas pela Sigatoka-negra.
Resumo:
Cultivares comerciais de macieiras são infectadas por 3 espécies principais de vírus: Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV) e Apple stem pitting virus (ASPV), geralmente em infecções complexas. O objetivo do estudo foi caracterizar a diversidade genética de genes da proteína capsidial (CP) de isolados de ACLSV.
Resumo:
2007
Resumo:
Background:In vitrocell suspension cultivation systems have been largely reported assafe and standardized methods for production of secondary metabolites with medicinaland agricultural interest.Capsicum annuumis one of the most widely grown vegetablein the world and its biological activities have been demonstrated against insects, fungi,bacteria and other groups of organisms. The determination of procedures for thededifferentiation of cells into callus cells and the subsequent study of the callus growthpattern are necessary for the establishment of cellsuspensions and also to subsidizestudies regarding the bioactivity of its secondarymetabolites. To date, no study hasdescribed the development of protocols for callus induction inC. annuumL. cv. Etna. Objective:The objective of this study was to establish a protocol for dedifferentiationof leaf cells of the cultivarC. annuumcv. Etna and to determine the growth pattern ofthe calluses with a focus on the deceleration phase, when the callus cells must besubcultured into a liquid medium in order to establish cell suspension cultivationsaiming at the production of secondary metabolites.Results:The treatment that resultedin the highest %CI, ACCC and callus weight was thecombination of 4.52 μ M 2,4-D +0.44 μ M BA. The calluses produced were friable andwhitish and their growth patternfollowed a sigmoid shape. The deceleration phase started on the 23rdday of cultivation.Conclusion:Callus induction in leaf explants ofC. annuumcv. Etnacan be achieved inMS medium supplemented with 4.52 μ M 2,4-D + 0.44 μ MBA, which results in highcellular proliferation; in order to start a cell suspension culture, callus cells on the 23rdday of culture should be used.