924 resultados para Latent Threshold
Resumo:
A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals -- The algorithm to define the dynamic threshold is a modification of a convex combination found in literature -- This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise -- The present work shows preliminary results over a database built with some political speech -- The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared -- Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works
Resumo:
Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).
Resumo:
Using antiprotons from the Low Energy Antiproton Ring at CERN, an investigation of the reaction pp -+ AA at threshold has been completed. This work includes a thorough scan of the 2 MeV region where a hint of a cross section resonance had been observed. No such resonance is evident in this work. In all, the cross section is measured in 30 energy bins. These measurements range from reaction threshold to 6.0 MeV excess energy in 0.25 MeV steps. An additional six points in the 13 MeV region have also been determined. Here, these cross sections and the differential cross sections in five energy bins will be presented.
Resumo:
The effectiveness and value of entrepreneurship education is much debated within academic literature. The individual’s experience is advocated as being key to shaping entrepreneurial education and design through a multiplicity of theoretical concepts. Latent, pre-nascent and nascent entrepreneurship (doing) studies within the accepted literature provide an exceptional richness in diversity of thought however, there is a paucity of research into latent entrepreneurship education. In addition, Tolman’s early work shows the existence of cases whereby a novel problem is solved without trial and error, and sees such previous learning situations and circumstances as “examples of latent learning and reasoning”, (Deutsch, 1956, pg115). Latent learning has historically been the cause of much academic debate however, Coon’s (2004, pg260) work refers to “latent (hidden) learning … (as being) … without obvious reinforcement and remains hidden until reinforcement is provided” and thus, forms the working definition for the purpose of this study.
Resumo:
ABSTRACT Researchers frequently have to analyze scales in which some participants have failed to respond to some items. In this paper we focus on the exploratory factor analysis of multidimensional scales (i.e., scales that consist of a number of subscales) where each subscale is made up of a number of Likert-type items, and the aim of the analysis is to estimate participants' scores on the corresponding latent traits. We propose a new approach to deal with missing responses in such a situation that is based on (1) multiple imputation of non-responses and (2) simultaneous rotation of the imputed datasets. We applied the approach in a real dataset where missing responses were artificially introduced following a real pattern of non-responses, and a simulation study based on artificial datasets. The results show that our approach (specifically, Hot-Deck multiple imputation followed of Consensus Promin rotation) was able to successfully compute factor score estimates even for participants that have missing data.
Resumo:
We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca) in living cells. Modelling Ca release as a threshold process allows the explicit construction of travelling wave solutions to probe the dependence of Ca wave speed on physiologically important parameters such as the threshold for Ca release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca resequestration from the cytosol to the ER, and the total [Ca] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called "tango waves" and the dependence of Ca wave speed on the total [Ca]. The original publication is available at www.springerlink.com (Journal of Mathematical Biology)
Resumo:
We introduce a new class of integer-valued self-exciting threshold models, which is based on the binomial autoregressive model of order one as introduced by McKenzie (Water Resour Bull 21:645–650, 1985. doi:10.1111/j.1752-1688.1985. tb05379.x). Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation and forecasting are addressed. Finally, the performance of these models is illustrated through a simulation study and an empirical application to a set of measle cases in Germany.
Resumo:
220 p.
Resumo:
The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.
Resumo:
International audience