997 resultados para Laser floating zone
Resumo:
In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.
Resumo:
A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America
Resumo:
A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.
Resumo:
Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.
Resumo:
An approach for fabricating large area uniform nanostructures by direct femtosecond (fs) laser ablation is presented. By the simple scanning technique with appropriate irradiation conditions, arbitrary size of uniform, complanate nano-grating, nano-particle, and nano-square structures can be produced on wide bandgap materials as well as graphite. The feature sizes of the formed nanostructures, which can be tuned in a wide range by varying the irradiation wavelength, is about 200 nm with 800 nm fs laser irradiation. The physical properties of the nano-structured surfaces are changed greatly, especially the optical property, which is demonstrated by the extraordinary enhancement of light transmission of the treated area. This technique is efficient, universal, and environmentally friendly, which exhibits great potential for applications in photoelectron devices. (C) 2008 Optical Society of America
Resumo:
We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.
Resumo:
The origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of betatron oscillations driven by the laser field. As trapped electrons accelerate, they move forward and interact with the laser pulse. For the bubble regime, a simple model is presented to describe this interaction in terms of a harmonic oscillator with a driving force from the laser and a restoring force from the plasma wake field. The resulting beam oscillations in the polarization plane, with period approximately the wavelength of the driving laser, increase emittance in that plane and cause microbunching of the beam. These effects are observed directly in 3D particle-in-cell simulations.
Resumo:
We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using conventional methods, a laser pulse can be focused down to around 6-8 mu m, but further reduction of the spot size has proven to be difficult. Here it is shown by particle-in-cell simulation that with a hollow cone an intense laser pulse can be reduced to a tiny, highly localized, spot of around 1 mu m radius, accompanied by much enhanced light intensity. The pulse shaping and focusing effect is due to a nonlinear laser-plasma interaction on the inner surface of the cone. When a thin foil is attached to the tip of the cone, the cone-focused light pulse compresses and accelerates the ions in its path and can punch through the thin target, creating highly localized energetic ion bunches of high density.
Resumo:
We theoretically study the influence of Coulomb potential for photoionization of hydrogen atoms in an intense laser field with elliptical polarization. The total ionization rates, photoelectron energy spectra, and photoelectron angular distributions are calculated with the Coulomb-Volkov wave functions in the velocity gauge and compared with those calculated in the length gauge as well as those calculated with the Volkov wave functions. By comparing the results obtained by the Coulomb-Volkov and Volkov wave functions, we find that for linear polarization the influence of Coulomb potential is obvious for low-energy photoelectrons, and as the photoelectron energy and/or the laser intensity increase, its influence becomes smaller. This trend, however, is not so clear for the case of elliptical polarization. We also find that the twofold symmetry in the photoelectron angular distributions for elliptical polarization is caused by the cooperation of Coulomb potential and interference of multiple transition channels. About the gauge issue, we show that the difference in the photoelectron angular distributions obtained by the velocity and length gauges becomes rather obvious for elliptical polarization, while the difference is generally smaller for linear polarization.
Resumo:
The ionization rate of molecules in intense laser fields may be much lower than that of atoms with similar binding energy. This phenomenon is termed the ionization suppression of molecules and is caused by the molecular inner structure. In this paper, we perform a comprehensive study of the ionization suppression of homonuclear diatomic molecules in intense laser fields of linear and circular polarizations. We find that for linear polarization the total ionization rate and the ionization suppression depend greatly on the molecular alignment, and that for circular polarization the ionization suppression of molecules in the antibonding (bonding) shells disappears (appears) for laser intensities around 10(15) W/cm(2). We also find that the molecular photoelectron energy spectra are greatly changed by the interference effect, even though the total ionization rate of molecules remains almost the same as that of their companion atoms.
Resumo:
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+ :Y2SiO5 crystal with 120 fs, 800 mn infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d -> 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We experimentally investigate the evolution of an angularly resolved spectrum of third harmonic generated by infrared femtosecond laser pulse filamentation in air. We show that at low pump intensity, phase matching between the fundamental and third-harmonic waves dominates the nonlinear optical effect and induces a ring structure of the third-harmonic beam, whereas at high pump intensity, the dispersion properties of air begin to affect the angular spectrum, leading to the formation of a nonlinear X wave at third harmonic.
Resumo:
We report the fabrication of a novel surface-enhanced Raman scattering (SERS) substrate with a controllable enhancement factor (EF) using femtosecond laser direct writing on Ag+-doped phosphate glass followed by chemical plating at similar to 40 degrees C. Silver seeds were first photoreduced using a femtosecond laser in a laser-irradiated area and then transformed into silver nanoparticles of suitable size for SERS application in the subsequent chemical plating. Rhodamine 6G was used as a probing molecule to investigate the enhancement effect of a Raman signal on the substrate. Nearly homogenous enhancement of the Raman signal over the Substrate was achieved, and the EF of the substrate was controlled to some extent by adjusting fabrication parameters. Moreover, the ability of forming a SERS platform in an embedded microfluidic chamber would be of great use for establishing a compact lab-on-a-chip device based on Raman analysis.