931 resultados para Large-scale Testing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Screwworms are obligate, invasive parasites of warm-blooded animals. The female flies lay batches of eggs at the edge of wounds or other lesions. These eggs hatch to larvae or screw-worms which feed on affected animals for 6-7 days, burrowing deeply into subcutaneous tissues and causing severe trauma to animals, production loss and potentially death. Susceptible sites include wounds resulting from management practices such as castration, de-horning and ear tagging and lesions caused by the activities of other parasites such as buffalo flies and ticks. The navels of the new born and the vulval region of their mothers following parturition are highly susceptible and body orifices such as nose and ears are also frequent targets for ovipositing screwworm flies. The Old World screw-worm, Chrysomya bezziana (OWS) is considered one of the most serious exotic insect pest threatening Australia's livestock industries and is endemic in a number of our closest neighbouring countries. New World screwworm (NWS), Cochliomyia hominivorax, endemic to South America, has also entered Australia on at least 2 occasions. Many tropical and subtropical areas of Australia are suitable for the establishment of OWS and the potential range is expected to increase with climate change. The Australian screwworm preparedness strategy indicates a program of containment with chemical treatments followed by eradication of OWS using sterile male release and parasiticides. However, there is no longer an operational OWS sterile insect screw-worm facility anywhere in the world and establishing a large scale production facility would most optimistically take at least 2 years. In the interim, containment would be almost totally dependent on the availability of effective chemical controls. A review of chemical formulations available for potential use against OWS in Australia found that currently only one chemical, ivermectin administered by subcutaneous injection (s.c.) is registered for use against OWS and that many of the chemicals previously shown to be effective against OWS were no longer registered for animal use in Australia.18 From this review a number of Australian-registered chemicals were recommended as a priority for testing against OWS. The Australian Pesticides and Veterinary Medicines Authority (APVMA) can issue an emergency use permit for use of pesticides if they are registered in Australia for other animal uses and shown to be effective against OWS. This project tested the therapeutic and prophylactic efficacy of chemicals with potential for use in the treatment and control of OWS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The article by Meric-Bernstam et al1 that was recently published in Journal of Clinical Oncology raises important questions about the clinical application of large-scale genomic testing. We congratulate the authors for this ambitious study, which successfully profiled 2,000 consecutive patients with advanced cancer. The next-generation sequencing (NGS) platform was used for 1,749 of 2,000 patients (87.5%). Of 789 patients with potentially actionable mutations, 83 (11%, or 4% of screened population) were enrolled in a genomically matched clinical study. As the editorial2 accompanying the article by Meric-Bernstam et al1 pointed out, the 4% figure, albeit disappointing, may be an underestimate because cancers such as lung adenocarcinoma and melanoma, for which ≥ 50% of patients have actionable mutations, were under-represented. ...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silicon particle detectors are used in several applications and will clearly require better hardness against particle radiation in the future large scale experiments than can be provided today. To achieve this goal, more irradiation studies with defect generating bombarding particles are needed. Protons can be considered as important bombarding species, although neutrons and electrons are perhaps the most widely used particles in such irradiation studies. Protons provide unique possibilities, as their defect production rates are clearly higher than those of neutrons and electrons, and, their damage creation in silicon is most similar to the that of pions. This thesis explores the development and testing of an irradiation facility that provides the cooling of the detector and on-line electrical characterisation, such as current-voltage (IV) and capacitance-voltage (CV) measurements. This irradiation facility, which employs a 5-MV tandem accelerator, appears to function well, but some disadvantageous limitations are related to MeV-proton irradiation of silicon particle detectors. Typically, detectors are in non-operational mode during irradiation (i.e., without the applied bias voltage). However, in real experiments the detectors are biased; the ionising proton generates electron-hole pairs, and a rise in rate of proton flux may cause the detector to breakdown. This limits the proton flux for the irradiation of biased detectors. In this work, it is shown that, if detectors are irradiated and kept operational, the electric field decreases the introduction rate of negative space-charges and current-related damage. The effects of various particles with different energies are scaled to each others by the non-ionising energy loss (NIEL) hypothesis. The type of defects induced by irradiation depends on the energy used, and this thesis also discusses the minimum proton energy required at which the NIEL-scaling is valid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of a new class of single pan high efficiency, low emission stoves, named gasifier stoves, that promise constant power that can be controlled using any solid biomass fuel in the form of pellets is reported here. These stoves use battery-run fan-based air supply for gasification (primary air) and for combustion (secondary air).Design with the correct secondary air flow ensures near-stoichiometric combustion that allows attainment of peak combustion temperatures with accompanying high water boiling efficiencies (up to 50% for vessels of practical relevance) and very low emissions (of carbon monoxide, particulate matter and oxides of nitrogen). The use of high density agro-residue based pellets or coconut shell pieces ensures operational duration of about an hour or more at power levels of 3 kWth (similar to 12 g/min). The principles involved and the optimization aspects of the design are outlined. The dependence of efficiency and emissions on the design parameters are described. The field imperatives that drive the choice of the rechargeable battery source and the fan are brought out. The implications of developments of Oorja-Plus and OorjaSuper stoves to the domestic cooking scenario of India are briefly discussed. The process development, testing and internal qualification tasks were undertaken by Indian Institute of Science. Product development and the fuel pellet production were dealt with by First Energy Private Ltd.Close interaction at several times during this period has helped progress the project from the laboratory to large scale commercial operation. At this time, over four hundred thousand stoves and 30 kilotonnes fuel have been sold in four states in India.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large eddy simulation (LES) is an emerging technique for obtaining an approximation to turbulent flow fields It is an improvement over the widely prevalent practice of obtaining means of turbulent flows when the flow has large scale, low frequency, unsteadiness An introduction to the method, its general formulation, and the more common modelling for flows without reaction, is discussed Some attempts at extension to flows with combustion have been made Examples from present work for flows with and without combustion are given The final example of the LES of the combustor of a helicopter engine illustrates the state-of-the-art in application of the technique

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.