980 resultados para Langmuir-Schaefer (LS)
Resumo:
Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)
Resumo:
Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.
Resumo:
The quinacridone derivatives N,N'-dialkyl-1,3,8,10-tetramethylquinacridone (CnTMQA, n = 6, 10, 14) were used as building blocks to assemble luminescent nano- and microscale wires. It was demonstrated that CnTMQA with different lengths of alkyl chains display obviously different wire formation properties. C10TMQA and C14TMQA showed a stronger tendency to form 1-D nano- and microstructures compared with C6TMQA. The C10TMQA molecules could be employed to fabricate the wires with different diameters, which exhibited a size-dependent luminescence property. The emission spectrum of the C10TMQA wires with diameters of 200-500 nm shows a broad emission band at 560 nm and a shoulder at around 535 nm, while the emission spectrum of the C10TMQA wires with diameters of 2-3 mu m reveals a narrower emission band at 563 nm. For the CnTMQA-based samples with different morphologies, the emission property change tendency agrees with that of the powder X-ray diffraction patterns of these samples.
Resumo:
Phase separation of bisphenol A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) thin blend film is suppressed by addition of solid epoxy oligomer. Epoxy has strong intermolecular interactions with both PC and PMMA, while PC and PMMA are quite incompatible with each other. Consequently, phase separation in the PC/PMMA blend film pushes epoxy to the interface; at the same time, PC and epoxy react readily at the interface to form a cross-linking structure, binding PMMA chains together. Therefore, the interface between PC and PMMA is effectively reinforced, and the PC/PMMA thin blend film is stabilized against phase separation. On the other hand, only an optimal content of epoxy (i.e., 10 wt %) can serve as an efficient interfacial agent. In contrast to the traditional reactive compatibilization, here we observed that the cross-linking structure along the interface is much more stable than block or graft copolymers. Atomic force microscopy (AFM) is used to characterize the morphological changes of the blend films as a function of annealing time. Two-dimensional fast Fourier transform (2D-FFT) of AFM data allows quantitative investigation of the scaling behavior of phase separation kinetics.
Resumo:
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Resumo:
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.
Resumo:
Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.
Resumo:
The approach of water droplets self-running horizontally and uphill without any other forces was proposed by patterning the shape-gradient hydrophilic material (i.e., mica) to the hydrophobic matrix (i.e., wax or low-density polyethylene (LDPE)). The shape-gradient composite surface is the best one to drive water droplet self-running both at the high velocity and the maximal distance among four different geometrical mica/wax composite surfaces. The driving force for the water droplets self-running includes: (1) the great difference in wettability of surface materials, (2) the low contact angle hysteresis of surface materials, and (3) the space limitation of the shape-gradient transportation area. Furthermore, the average velocity and the maximal distance of the self-running were mainly determined by the gradient angle (alpha), the droplet volume, and the difference of the contact angle hysteresis. Theoretical analysis is in agreement with the experimental results.
Resumo:
A new method of reversibly moving US nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methaerylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMNlA-co-PCdNlA) brushes were converted to polystyrene-b-(poly(methyl methacrylate) -co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which US nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of US nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.
Resumo:
Polylactide (PLA) was melt blended with a biodegradable hyperbranched poly(ester amide) (HBP) to enhance its flexibility and toughness without sacrificing comprehensive performance. The advantage of using HBP was due to its unique spherical shape, low melt viscosity, and abundant functional end groups together with its easy access. Rheological measurement showed that blending PLA with as little as 2.5% HBP resulted in a 40% reduction of melt viscosity. The glass transition temperature (T-g) of PLA in the blends decreased slightly with the increase of HBP content, indicating partial miscibility which resulted from intermolecular interactions via H-bonding. The H-bonding involving CO of PLA with OH and NH of HBP was evidenced by FTIR analysis for the first time. The HBP component, as a heterogeneous nucleating agent, accelerated the crystallization rate of PLA. Remarkably, with the increase of HBP content, the elongation at break of PLA blends dramatically increased without severe loss in tensile strength, even the tensile strength increased within 10% content of HBP. The stress-strain curves and the SEM photos of impact-fractured surface showed the material changed from brittle to ductile failure with the addition of HBP. Reasonable interfacial adhesion via H-bonding and finely dispersed particulate structure of HBP in PLA were proposed to be responsible for the improved mechanical properties.
Resumo:
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.
Resumo:
In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.
Resumo:
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
Properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were significantly modified by a hydrogen bonding (H-bond) monomer-bisphenol A (BPA). BPA lowered the T-m of PHBV and widened the heat-processing window of PHBV. At the same time, a dynamic H-bond network in the blends was observed indicating that BPA acted as a physical cross-link agent. BPA enhanced the T, of PHBV and reduced the crystallization rate of PHBV. It resulted in larger crystallites in PHBV/BPA blends showed by WAXD. However, the crystallinity of PHBV was hardly reduced. SAXS results suggested that BPA molecules distributed in the inter-lamellar region of PHBV. Finally, a desired tension property was obtained, which had an elongation at break of 370% and a yield stress of 16 MPa. By comparing the tension properties of PHBV/BPA and PHBV/tert-butyl phenol blends, it was concluded that the H-bond network is essential to the improvement of ductility.