967 resultados para LIGAND DOMAIN
Resumo:
IntFOLD is an independent web server that integrates our leading methods for structure and function prediction. The server provides a simple unified interface that aims to make complex protein modelling data more accessible to life scientists. The server web interface is designed to be intuitive and integrates a complex set of quantitative data, so that 3D modelling results can be viewed on a single page and interpreted by non-expert modellers at a glance. The only required input to the server is an amino acid sequence for the target protein. Here we describe major performance and user interface updates to the server, which comprises an integrated pipeline of methods for: tertiary structure prediction, global and local 3D model quality assessment, disorder prediction, structural domain prediction, function prediction and modelling of protein-ligand interactions. The server has been independently validated during numerous CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiments, as well as being continuously evaluated by the CAMEO (Continuous Automated Model Evaluation) project. The IntFOLD server is available at: http://www.reading.ac.uk/bioinf/IntFOLD/
Resumo:
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. In Part II, the moisture budgets and moist entropy budgets are analyzed. Vertical subgrid diabatic heating profiles and vertical velocity profiles are also compared; these are related to the horizontal and vertical advective components of the moist entropy budget which contribute to gross moist stability, GMS, and normalized GMS (NGMS). The 4-km model with explicit convection and good MJO performance has a vertical heating structure that increases with height in the lower troposphere in regions of strong convection (like observations), whereas the 12-km model with parameterized convection and a poor MJO does not show this relationship. The 4-km explicit convection model also has a more top-heavy heating profile for the troposphere as a whole near and to the west of the active MJO-related convection, unlike the 12-km parameterized convection model. The dependence of entropy advection components on moisture convergence is fairly weak in all models, and differences between models are not always related to MJO performance, making comparisons to previous work somewhat inconclusive. However, models with relatively good MJO strength and propagation have a slightly larger increase of the vertical advective component with increasing moisture convergence, and their NGMS vertical terms have more variability in time and longitude, with total NGMS that is comparatively larger to the west and smaller to the east.
Resumo:
Medication safety and errors are a major concern in care homes. In addition to the identification of incidents, there is a need for a comprehensive system description to avoid the danger of introducing interventions that have unintended consequences and are therefore unsustainable. The aim of the study was to explore the impact and uniqueness of Work Domain Analysis (WDA) to facilitate an in-depth understanding of medication safety problems within the care home system and identify the potential benefits of WDA to design safety interventions to improve medication safety. A comprehensive, systematic and contextual overview of the care home medication system was developed for the first time. The novel use of the Abstraction Hierarchy (AH) to analyse medication errors revealed the value of the AH to guide a comprehensive analysis of errors and generate system improvement recommendations that took into account the contextual information of the wider system.
Resumo:
Emotional dysregulation and attachment insecurity have been reported in borderline personality disorder (BPD). Domain disorganization, evidenced in poor regulation of emotions and behaviors in relation to the demands of different social domains, may be a distinguishing feature of BPD. Understanding the interplay between these factors may be critical for identifying interacting processes in BPD and potential subtypes of BPD. Therefore, we examined the joint and interactive effects of anger, preoccupied attachment, and domain disorganization on BPD traits in a clinical sample of 128 psychiatric patients. The results suggest that these factors contribute to BPD both independently and in interaction, even when controlling for other personality disorder traits and Axis I symptoms. In regression analyses, the interaction between anger and domain disorganization predicted BPD traits. In recursive partitioning analyses, two possible paths to BPD were identified: high anger combined with high domain disorganization and low anger combined with preoccupied attachment. These results may suggest possible subtypes of BPD or possible mechanisms by which BPD traits are established and maintained.
Resumo:
The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.
Resumo:
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.
Resumo:
We have used a novel knockin mouse to investigate the effect of disruption of phosphotyrosine binding of the N-terminal SH2 domain of Syk on platelet activation by GPVI, CLEC-2, and integrin αIIbβ3. The Syk(R41Afl/fl) mouse was crossed to a PF4-Cre(+) mouse to induce expression of the Syk mutant in the megakaryocyte/platelet lineage. Syk(R41Afl/fl;PF4-Cre) mice are born at approximately 50% of the expected frequency and have a similar phenotype to Syk(fl/fl;PF4-Cre) mice, including blood-lymphatic mixing and chyloascites. Anastomosis of the venous and lymphatic vasculatures can be seen in the mesenteric circulation accounting for rapid and continuous mixing of the 2 vasculatures. Platelet activation by CLEC-2 and GPVI is abolished in Syk(R41Afl/fl;PF4-Cre) platelets. Syk phosphorylation on Tyr519/20 is blocked in CLEC-2-stimulated platelets, suggesting a model in which binding of Syk via its N-terminal SH2 domain regulates autophosphorylation. In contrast, outside-in signaling by integrin αIIbβ3 is not altered, but it is inhibited in the presence of inhibitors of Src and Syk tyrosine kinases. These results demonstrate that αIIbβ3 regulates Syk through an ITAM-independent pathway in mice and provide novel insight into the course of events underlying Syk activation and hemITAM phosphorylation by CLEC-2.
Resumo:
The synthesis and characterization of the first anions containing two gallium-sulfide supertetrahedra linked via an organic moiety are described.
Resumo:
We formulate an agent-based population model of Escherichia coli cells which incorporates a description of the chemotaxis signalling cascade at the single cell scale. The model is used to gain insight into the link between the signalling cascade dynamics and the overall population response to differing chemoattractant gradients. Firstly, we consider how the observed variation in total (phosphorylated and unphosphorylated) signalling protein concentration affects the ability of cells to accumulate in differing chemoattractant gradients. Results reveal that a variation in total cell protein concentration between cells may be a mechanism for the survival of cell colonies across a wide range of differing environments. We then study the response of cells in the presence of two different chemoattractants.In doing so we demonstrate that the population scale response depends not on the absolute concentration of each chemoattractant but on the sensitivity of the chemoreceptors to their respective concentrations. Our results show the clear link between single cell features and the overall environment in which cells reside.
Resumo:
We report the synthesis and evaluation of a novel hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligand containing carboxylate groups as a selective aqueous complexing agent for the minor actinides over lanthanides. The novel ligand is able to complex and separate Am(III) from Eu(III) in alkaline solutions selectively.
Resumo:
In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.
Resumo:
Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.