994 resultados para LAYERED SILICATE NANOCOMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PANI-LiNi0.8Co0.2O2 nanocomposite material with improved properties as positive electrode was prepared by a new synthesis method. In a first step, LiNi0.8Co0.2O2 mixed oxide in the form of a fine powder was dispersed in aniline and this suspension was sprayed on the surface of an aqueous solution of HCl and ammonium peroxodisulfate. The resulting PANI-LiNi0.8Co0.2O2 nanocomposite is spontaneously formed by polymerization of the aniline molecules present in the drops together with small particles of the oxide. This method induces the formation of nanocomposites showing a better distribution of the oxide particles in the polymer matrix than that observed in related PANI-LiNi0.8Co0.2O2 microcomposites prepared under ultrasound irradiation to disperse the oxide particles during PANI polymerization. Measurements of electrical conductivity and zeta potential, as well as structural characterization of PANI-LiNi0.8Co0.2O2 nanocomposites, reveal the existence of relatively strong interactions between the conducting polymer and the oxide particles. This feature determines higher values of the electrical conductivity (0.5 S cm(-1)) and of the average operative voltage (3.6 V), as well as of other technological parameters of the nanocomposite when it is used as the positive electrode of rechargeable lithium batteries, in comparison to those of the related microcomposite materials already reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of calcium silicate hydrates (C-S-H) during the hydration of tricalcium silicate (C3S) in pure water and in water solutions containing 1% CaCl2 (accelerator) and 0.01% saccharose (retarder) was studied by small-angle X-ray scattering (SAXS). SAXS measurements were performed under isothermal conditions within the temperature range 25 °C T < 52 °C. The experimental results indicate that the time variation of the mass fraction of the C-S-H product phase, α(f), can be fitted, under all conditions of paste setting, by Avrami equation, α(t) = 1 -exp(-(kt)′), k being a rate parameter and n an exponent depending on the characteristics of the transformation. The parameter n is approximately equal to 2 for hydration of C^S in pure water. Depending on temperature, n varies from 2 to 2.65 for hydration in the presence of CaC^ and saccharose. The value n = 2 is theoretically expected for lateral growth of thin C-S-H plates of constant thickness. The time dependence of SAXS intensity indicates that the transformed phase (C-S-H) consists of colloidal particles in early stages of hydration, evolving by two-dimensional growth toward a disordered lamellar structure composed of very thin plates. The activation energy ΔE for the growth of C-S-H phase was determined from the time dependence of X-ray scattering intensity. These data were obtained by in situ measurements at different temperatures of hydration. The values of ΔE are 37.7, 49.4, and 44.3 kJ/mol for hydration in pure water and in water solutions containing CaCl2 and saccharose, respectively. © 2000 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrips palmi Karny (Thysanoptera: Thripidae) is a phytophagous insect associated with the reduction of eggplant productivity. The aim of this study was to evaluate the effect of calcium silicate and/or an organic mineral fertilizer, together or separately, in increasing the resistance of eggplants to T. palmi. The treatments were calcium silicate, organic mineral fertilizer, calcium silicate associated with this fertilizer and the control. Mortality and number of lesions caused by nymphs of this insect on eggplant leaves were evaluated after 3, 6, 9 and 12 leaf applications of these products. The calcium silicate and the organic mineral fertilizer reduced both the population of T. palmi and the damage caused by its nymphs, suggesting a possible increase in eggplant resistance to this pest as a result of the treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40-50 of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. © 2011 S. Saska et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10 -1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose nanofibrils have been evaluated as reinforcement material in polymeric matrixes due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes as well as its environmental positive footprint. This work describes how banana nanocellulose can be used to replace others not so friendly materials in many applications including, biomaterials, automotive industries and packaging by proved with their mechanical properties. The process used is very mild to the environment and consists of a high pressure fibrillation followed by a chemical purification which affects the fiber morphology. Many fibers characterization processes were used including microscopy techniques and X-ray diffraction to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of the fibers. © 2012 Materials Research Society.