989 resultados para Knight, Marcus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the approach to the modelling of experiential knowledge in an industrial application of Case-Based Reasoning (CBR). The CBR involves retrieval techniques in conjunction with a relational database. The database is especially designed as a repository of experiential knowledge, and includes qualitative search indices. The system is intended to help design engineers and material engineers in the submarine cable industry. It consists of three parts: a materials database; a database of experiential knowledge; and a CBR system used to retrieve similar past designs based upon component and material qualitative descriptions. The system is currently undergoing user testing at the Alcatel Submarine Networks site in Greenwich.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes progress on a project to utilise case based reasoning methods in the design and manufacture of furniture products. The novel feature of this research is that cases are represented as structures in a relational database of products, components and materials. The paper proposes a method for extending the usual "weighted sum" over attribute similarities for a ·single table to encompass relational structures over several tables. The capabilities of the system are discussed, particularly with respect to differing user objectives, such as cost estimation, CAD, cutting scheme re-use, and initial design. It is shown that specification of a target case as a relational structure combined with suitable weights can fulfil several user functions. However, it is also shown that some user functions cannot satisfactorily be specified via a single target case. For these functions it is proposed to allow the specification of a set of target cases. A derived similarity measure between individuals and sets of cases is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The so-called dividing instant (DI) problem is an ancient historical puzzle encountered when attempting to represent what happens at the boundary instant which divides two successive states. The specification of such a problem requires a thorough exploration of the primitives of the temporal ontology and the corresponding time structure, as well as the conditions that the resulting temporal models must satisfy. The problem is closely related to the question of how to characterize the relationship between time periods with positive duration and time instants with no duration. It involves the characterization of the ‘closed’ and ‘open’ nature of time intervals, i.e. whether time intervals include their ending points or not. In the domain of artificial intelligence, the DI problem may be treated as an issue of how to represent different assumptions (or hypotheses) about the DI in a consistent way. In this paper, we shall examine various temporal models including those based solely on points, those based solely on intervals and those based on both points and intervals, and point out the corresponding DI problem with regard to each of these temporal models. We shall propose a classification of assumptions about the DI and provide a solution to the corresponding problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a case base reduction technique which uses a metric defined on the solution space. The technique utilises the Generalised Shepard Nearest Neighbour (GSNN) algorithm to estimate nominal or real valued solutions in case bases with solution space metrics. An overview of GSNN and a generalised reduction technique, which subsumes some existing decremental methods, such as the Shrink algorithm, are presented. The reduction technique is given for case bases in terms of a measure of the importance of each case to the predictive power of the case base. A trial test is performed on two case bases of different kinds, with several metrics proposed in the solution space. The tests show that GSNN can out-perform standard nearest neighbour methods on this set. Further test results show that a caseremoval order proposed based on a GSNN error function can produce a sparse case base with good predictive power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion of time plays a vital and ubiquitous role of a common universal reference. In knowledge-based systems, temporal information is usually represented in terms of a collection of statements, together with the corresponding temporal reference. This paper introduces a visualized consistency checker for temporal reference. It allows expression of both absolute and relative temporal knowledge, and provides visual representation of temporal references in terms of directed and partially weighted graphs. Based on the temporal reference of a given scenario, the visualized checker can deliver a verdict to the user as to whether the scenario is temporally consistent or not, and provide the corresponding analysis / diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes research into retrieval based on 3-dimensional shapes for use in the metal casting industry. The purpose of the system is to advise a casting engineer on the design aspects of a new casting by reference to similar castings which have been prototyped and tested in the past. The key aspects of the system are the orientation of the shape within the mould, the positions of feeders and chills, and particular advice concerning special problems and solutions, and possible redesign. The main focus of this research is the effectiveness of similarity measures based on 3-dimensional shapes. The approach adopted here is to construct similarity measures based on a graphical representation deriving from a shape decomposition used extensively by experienced casting design engineers. The paper explains the graphical representation and discusses similarity measures based on it. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and its principal components visualization. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a method for interpolation over a set of retrieved cases in the adaptation phase of the case-based reasoning cycle. The method has two advantages over traditional systems: the first is that it can predict “new” instances, not yet present in the case base; the second is that it can predict solutions not present in the retrieval set. The method is a generalisation of Shepard’s Interpolation method, formulated as the minimisation of an error function defined in terms of distance metrics in the solution and problem spaces. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The method is illustrated in the paper with reference to the Irises classification problem. It is evaluated with reference to a simulated nominal value test problem, and to a benchmark case base from the travel domain. The algorithm is shown to out-perform conventional nearest neighbour methods on these problems. Finally, GSNN is shown to improve in efficiency when used in conjunction with a diverse retrieval algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical models are important tools used in engineering fields to predict the behaviour and the impact of physical elements. There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. This paper considers how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor problem. The paper describes example problems faced by design engineers in this context and the issues that need to be considered in this approach. Solution of these problems require methods to handle constraints in both the retrieval phase and the adaptation phase of a typical CBR cycle. We show approaches to the solution of these problesm via a CBR tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of a blackboard architecture for building a hybrid case based reasoning (CBR) system. The Smartfire fire field modelling package has been built using this architecture and includes a CBR component. It allows the integration into the system of qualitative spatial reasoning knowledge from domain experts. The system can be used for the automatic set-up of fire field models. This enables fire safety practitioners who are not expert in modelling techniques to use a fire modelling tool. The paper discusses the integrating powers of the architecture, which is based on a common knowledge representation comprising a metric diagram and place vocabulary and mechanisms for adaptation and conflict resolution built on the Blackboard.