909 resultados para Keys to Database Searching
Resumo:
BACKGROUND: As progress is made towards attaining Millennium Development Goal 4, further reductions in paediatric mortality will only be achieved by concentrating on the burden of non-communicable or neglected diseases. The literature relating to paediatric cardiac disease in sub-Saharan Africa is sparse. There are no published descriptions of paediatric cardiac disease from Malawi, making it impossible to estimate the contribution it makes to childhood morbidity and mortality.
FINDINGS: In 2008, a paediatric cardiac clinic with echocardiogram scanning was established in Blantyre, southern Malawi. Between January 2009 and February 2011, the age and cardiac diagnosis of every child with an abnormal echocardiogram was recorded in a database. Of 250 children, 139 (55.6%) had congenital heart disease, and 111 (44.4%) acquired heart disease. Ventricular septal defect (VSD) (24%), Tetralogy of Fallot (10%) and patent ductus arteriousus (7.2%) were the commonest forms of congenital heart disease. Rheumatic heart disease (RHD) (22.4%) and dilated cardiomyopathy (13.6%) were the commonest acquired diseases. The mean age of presentation was 3 years 2 months for VSD and 11 years 6 months for RHD.
CONCLUSIONS: In this cohort of children from one centre in Malawi, acquired heart disease - in particular rheumatic heart disease was almost as common as congenital heart disease. Most presented late. It is likely that untreated cardiac disease causes a large number of childhood deaths in Malawi. In addition to renewing secondary preventative efforts against rheumatic heart disease, adequate and accessible cardiothoracic surgical services should be established at a regional level.
Resumo:
Background: Staff who provide end-of-life care to children not only have to deal with their own sense of loss, but also that of bereaved families. There is a dearth of knowledge on how they cope with these challenges.
Aim: The aim of this review is to explore the experiences of health care professionals who provide end-of-life care to children in order to inform the development of interventions to support them, thereby improving the quality of paediatric care for both children and their families.
Data sources: Searches included CINAHL, MEDLINE, Web of Science, EMBASE, PsychINFO, and The Cochrane Library in June 2015, with no date restrictions. Additional literature was uncovered from searching reference lists of relevant studies, along with contacting experts in the field of paediatric palliative care.
Design: This was a systematic mixed studies review. Study selection, appraisal and data extraction were conducted by two independent researchers. Integrative thematic analysis was used to synthesise the data.
Results: The 16 qualitative, six quantitative, and eight mixed-method studies identified included healthcare professionals in a range of settings. Key themes identified rewards and challenges of providing end-of-life care to children, the impact on staff’s personal and professional lives, coping strategies, and key approaches to help support staff in their role.
Conclusions: Education focusing on the unique challenges of providing end-of-life care to children and the importance of self-care, along with timely multidisciplinary debriefing are key strategies for improving healthcare staffs’ experiences, and as such the quality of care they provide.
Resumo:
Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’ across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological, molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recognizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.
Resumo:
In-Memory Databases (IMDBs), such as SAP HANA, enable new levels of database performance by removing the disk bottleneck and by compressing data in memory. The consequence of this improved performance means that reports and analytic queries can now be processed on demand. Therefore, the goal is now to provide near real-time responses to compute and data intensive analytic queries. To facilitate this, much work has investigated the use of acceleration technologies within the database context. While current research into the application of these technologies has yielded positive results, they have tended to focus on single database tasks or on isolated single user requests. This paper uses SHEPARD, a framework for managing accelerated tasks across shared heterogeneous resources, to introduce acceleration into an IMDB. Results show how, using SHEPARD, multiple simultaneous user queries all receive speed-up by using a shared pool of accelerators. Results also show that offloading analytic tasks onto accelerators can have indirect benefits for other database workloads by reducing contention for CPU resources.
Resumo:
The genus Bursaphelenchus includes B. xylophilus (Steiner et Buhrer, 1934) Nickle, 1981, which is of world economic and quarantine importance. Distinction among several species of the pinewood nematodes species complex (PWNSC) is often difficult. Besides standard morphology, morphometrics and molecular biology, new tools are welcome to better understand this group. The computerized (or e-) key of this genus, presented in this communication, includes 74 species (complete list of valid species of the world fauna) and 35 characters, that were used by the taxonomic experts of this group, in the original descriptions. Morphology of sex organs (male spicules and female vulval region) was digitized and classified to distinguish alternative types. Several qualitative characters with overlapping character states (expressions) were transformed into the morphometric indices with the discontinuous ranges (characters of ratios of the spicule dimensions). Characters and their states (expressions) were illustrated in detail and supplied by brief user-friendly comments. E-key was created in the BIKEY identification system (Dianov & Lobanov, 1996-2004). The system has built-algorithm ranging characters depending on their diagnostic values at each step of identification. Matrix of species and the character states (structural part of the e-key database) may be easily transformed using statistical packages into the dendrograms of general phenetic similarities (UPGMA, standard distance: mean character difference). It may be useful in the detailed analysis of taxonomy and evolution of the genus and in its splitting to the species groups based on morphology. The verification of the dendrogram using the information on the species links with insect vectors and their associated plants, provided an opportunity to recognize the five clusters (xylophilus, hunti, eremus sensu stricto, tusciae and piniperdae sensu stricto), which seem to be the natural species groups. The hypothesis about the origin and the first stages of the genus evolution is proposed. A general review of the genus Bursaphelenchus is presented.
Resumo:
Nowadays, a systems biology approach is both a challenge as well as believed to be the ideal form of understanding the organisms’ mechanisms of response. Responses at different levels of biological organization should be integrated to better understand the mechanisms, and hence predict the effects of stress agents, usable in broader contexts. The main aim of this thesis was to evaluate the underlying mechanisms of Enchytraeus albidus responses to chemical stressors. Therefore, there was a large investment on the gene library enrichment for this species, as explained ahead. Overall, effects of chemicals from two different groups (metals and pesticides) were assessed at different levels of biological organization: from genes and biochemical biomarkers to population endpoints. Selected chemicals were: 1) the metals cadmium and zinc; 2) the insecticide dimethoate, the herbicide atrazine and the fungicide carbendazim. At the gene and sub-cellular level, the effects of time and dosage were also adressed. Traditional ecotoxicological tests - survival, reproduction and avoidance behavior - indicated that pesticides were more toxic than metals. Avoidance behaviour is extremely important from an ecological point of view, but not recommended to use for risk assessment purposes. The oxidative stress related experiment showed that metals induced significant effects on several antioxidant enzyme activities and substrate levels, as well as oxidative damage on the membrane cells. To increase the potential of our molecular tool to assess transcriptional responses, the existing cDNA library was enriched with metal and pesticide responding genes, using Suppression Subtractive Hybridization (SSH). With the sequencing information obtained, an improved Agilent custom oligonucleotide microarray was developed and an EST database, including all existing molecular data on E. albidus, was made publicly available as an interactive tool to access information. With this microarray tool, most interesting and novel information on the mechanisms of chemical toxicity was obtained, with the identification of common and specific key pathways affected by each compound. The obtained results allowed the identification of mechanisms of action for the tested compounds in E. albidus, some of which are in line with the ones known for mammals, suggesting across species conserved modes of action and underlining the usefulness of this soil invertebrate as a model species. In general, biochemical and molecular responses were influenced by time of exposure and chemical dosage and these allowed to see the evolution of events. Cellular energy allocation results confirmed the gene expression evidences of an increased energetic expenditure, which can partially explain the decrease on the reproductive output, verified at a later stage. Correlations found throughout this thesis between effects at the different levels of biological organization have further improved our knowledge on the toxicity of metals and pesticides in this species.
Resumo:
Access control is a software engineering challenge in database applications. Currently, there is no satisfactory solution to dynamically implement evolving fine-grained access control mechanisms (FGACM) on business tiers of relational database applications. To tackle this access control gap, we propose an architecture, herein referred to as Dynamic Access Control Architecture (DACA). DACA allows FGACM to be dynamically built and updated at runtime in accordance with the established fine-grained access control policies (FGACP). DACA explores and makes use of Call Level Interfaces (CLI) features to implement FGACM on business tiers. Among the features, we emphasize their performance and their multiple access modes to data residing on relational databases. The different access modes of CLI are wrapped by typed objects driven by FGACM, which are built and updated at runtime. Programmers prescind of traditional access modes of CLI and start using the ones dynamically implemented and updated. DACA comprises three main components: Policy Server (repository of metadata for FGACM), Dynamic Access Control Component (DACC) (business tier component responsible for implementing FGACM) and Policy Manager (broker between DACC and Policy Server). Unlike current approaches, DACA is not dependent on any particular access control model or on any access control policy, this way promoting its applicability to a wide range of different situations. In order to validate DACA, a solution based on Java, Java Database Connectivity (JDBC) and SQL Server was devised and implemented. Two evaluations were carried out. The first one evaluates DACA capability to implement and update FGACM dynamically, at runtime, and, the second one assesses DACA performance against a standard use of JDBC without any FGACM. The collected results show that DACA is an effective approach for implementing evolving FGACM on business tiers based on Call Level Interfaces, in this case JDBC.
Resumo:
Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. Therefore, the scientific community is currently searching for new solutions to fight bacteria and infectious diseases, without promoting antimicrobial resistance. One of the most promising strategies is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. At the same time that bacterial population grows, the concentration of AIs in the bacterial environment increases. When a threshold concentration of AIs is reached, bacterial cells respond to it by altering their gene expression profile. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QSphenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should to be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by one of two monomers (itaconic acid and methacrylic acid), which are known to possess strong interactions with the bacterial signal molecules. Molecularly imprinted polymer nanoparticles (MIP NPs) are particles with recognition capabilities for the analyte of interest. This ability is attained by including the target analyte at the synthesis stage. Vibrio fischeri and Aeromonas hydrophila were used as model species for the study. Both the linear polymers and MIP NPs, tested free in solutions and coated to surfaces, showed ability to disrupt QS by decreasing bioluminescence of V. fischeri and biofilm formation of A. hydrophila. No significant effect on bacterial growth was detected. The cytotoxicity of the two types of polymers to a fibroblast-like cell line (Vero cells) was also tested in order to evaluate their safety. The results showed that both the linear polymers and MIP NPs were not cytotoxic in the testing conditions. In conclusion, the results reported in this thesis, show that the polymers developed are a promising strategy to disrupt QS and reduce bacterial infection and resistance. In addition, due to their low toxicity, solubility and easy integration by surface coating, the polymers have potential for applications in scenarios where bacterial infection is a problem: medicine, pharmaceutical, food industry and in agriculture or aquaculture.
Resumo:
Tese dout., Química, Universidade do Algarve, 2005