949 resultados para Kähler-Einstein Metrics
Resumo:
The increasing focus of relationship marketing and customer relationship management (CRM) studies on issues of customer profitability has led to the emergence of an area of research on profitable customer management. Nevertheless, there is a notable lack of empirical research examining the current practices of firms specifically with regard to the profitable management of customer relationships according to the approaches suggested in theory. This thesis fills this research gap by exploring profitable customer management in the retail banking sector. Several topics are covered, including marketing metrics and accountability; challenges in the implementation of profitable customer management approaches in practice; analytic versus heuristic (‘rule of thumb’) decision making; and the modification of costly customer behavior in order to increase customer profitability, customer lifetime value (CLV), and customer equity, i.e. the financial value of the customer base. The thesis critically reviews the concept of customer equity and proposes a Customer Equity Scorecard, providing a starting point for a constructive dialog between marketing and finance concerning the development of appropriate metrics to measure marketing outcomes. Since customer management and measurement issues go hand in hand, profitable customer management is contingent on both marketing management skills and financial measurement skills. A clear gap between marketing theory and practice regarding profitable customer management is also identified. The findings show that key customer management aspects that have been proposed within the literature on profitable customer management for many years, are not being actively applied by the banks included in the research. Instead, several areas of customer management decision making are found to be influenced by heuristics. This dilemma for marketing accountability is addressed by emphasizing that CLV and customer equity, which are aggregate metrics, only provide certain indications regarding the relative value of customers and the approximate value of the customer base (or groups of customers), respectively. The value created by marketing manifests itself in the effect of marketing actions on customer perceptions, behavior, and ultimately the components of CLV, namely revenues, costs, risk, and retention, as well as additional components of customer equity, such as customer acquisition. The thesis also points out that although costs are a crucial component of CLV, they have largely been neglected in prior CRM research. Cost-cutting has often been viewed negatively in customer-focused marketing literature on service quality and customer profitability, but the case studies in this thesis demonstrate that reduced costs do not necessarily have to lead to lower service quality, customer retention, and customer-related revenues. Consequently, this thesis provides an expanded foundation upon which marketers can stake their claim for accountability. By focusing on the range of drivers and all of the components of CLV and customer equity, marketing has the potential to provide specific evidence concerning how various activities have affected the drivers and components of CLV within different groups of customers, and the implications for customer equity on a customer base level.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
Tasaikäisen metsän alle muodostuvilla alikasvoksilla on merkitystä puunkorjuun, metsänuudistamisen, näkemä-ja maisema-analyysien sekä biodiversiteetin ja hiilitaseen arvioinnin kannalta. Ilma-aluksista tehtävä laserkeilaus on osoittautunut tehokkaaksi kaukokartoitusmenetelmäksi varttuneiden puustojen mittauksessa. Laserkeilauksen käyttöönotto operatiivisessa metsäsuunnittelussa mahdollistaa aiempaa tarkemman tiedon tuottamisen alikasvoksista, mikäli alikasvoksen ominaisuuksia voidaan tulkita laseraineistoista. Tässä työssä käytettiin tarkasti mitattuja maastokoealoja ja kaikulaserkeilausaineistoja (discrete return LiDAR) usealta vuodelta (1–2 km lentokorkeus, 0,9–9,7 pulssia m-2). Laserkeilausaineistot oli hankittu Optech ALTM3100 ja Leica ALS50-II sensoreilla. Koealat edustavat suomalaisia tasaikäisiä männiköitä eri kehitysvaiheissa. Tutkimuskysymykset olivat: 1) Minkälainen on alikasvoksesta saatu lasersignaali yksittäisen pulssin tasolla ja mitkä tekijät signaaliin vaikuttavat? 2) Mikä on käytännön sovelluksissa hyödynnettävien aluepohjaisten laserpiirteiden selitysvoima alikasvospuuston ominaisuuksien ennustamisessa? Erityisesti haluttiin selvittää, miten laserpulssin energiahäviöt ylempiin latvuskerroksiin vaikuttavat saatuun signaaliin, ja voidaanko laserkaikujen intensiteetille tehdä energiahäviöiden korjaus. Puulajien väliset erot laserkaiun intensiteetissä olivat pieniä ja vaihtelivat keilauksesta toiseen. Intensiteetin käyttömahdollisuudet alikasvoksen puulajin tulkinnassa ovat siten hyvin rajoittuneet. Energiahäviöt ylempiin latvuskerroksiin aiheuttivat alikasvoksesta saatuun lasersignaaliin kohinaa. Energiahäviöiden korjaus tehtiin alikasvoksesta saaduille laserpulssin 2. ja 3. kaiuille. Korjauksen avulla pystyttiin pienentämään kohteen sisäistä intensiteetin hajontaa ja parantamaan kohteiden luokittelutarkkuutta alikasvoskerroksessa. Käytettäessä 2. kaikuja oikeinluokitusprosentti luokituksessa maan ja yleisimmän puulajin välillä oli ennen korjausta 49,2–54,9 % ja korjauksen jälkeen 57,3–62,0 %. Vastaavat kappa-arvot olivat 0,03–0,13 ja 0,10–0,22. Tärkein energiahäviöitä selittävä tekijä oli pulssista saatujen aikaisempien kaikujen intensiteetti, mutta hieman merkitystä oli myös pulssin leikkausgeometrialla ylemmän latvuskerroksen puiden kanssa. Myös 3. kaiuilla luokitustarkkuus parani. Puulajien välillä havaittiin eroja siinä, kuinka herkästi ne tuottavat kaiun laserpulssin osuessa puuhun. Kuusi tuotti kaiun suuremmalla todennäköisyydellä kuin lehtipuut. Erityisen selvä tämä ero oli pulsseilla, joissa oli energiahäviöitä. Laserkaikujen korkeusjakaumapiirteet voivat siten olla riippuvaisia puulajista. Sensorien välillä havaittiin selviä eroja intensiteettijakaumissa, mikä vaikeuttaa eri sensoreilla hankittujen aineistojen yhdistämistä. Myös kaiun todennäköisyydet erosivat jonkin verran sensorien välillä, mikä aiheutti pieniä eroavaisuuksia kaikujen korkeusjakaumiin. Aluepohjaisista laserpiirteistä löydettiin alikasvoksen runkolukua ja keskipituutta hyvin selittäviä piirteitä, kun rajoitettiin tarkastelu yli 1 m pituisiin puihin. Piirteiden selitysvoima oli parempi runkoluvulle kuin keskipituudelle. Selitysvoima ei merkittävästi alentunut pulssitiheyden pienentyessä, mikä on hyvä asia käytännön sovelluksia ajatellen. Lehtipuun osuutta ei pystytty selittämään. Tulosten perusteella kaikulaserkeilausta voi olla mahdollista hyödyntää esimerkiksi ennakkoraivaustarpeen arvioinnissa. Sen sijaan alikasvoksen tarkempi luokittelu (esim. puulajitulkinta) voi olla vaikeaa. Kaikkein pienimpiä alikasvospuita ei pystytä havaitsemaan. Lisää tutkimuksia tarvitaan tulosten yleistämiseksi erilaisiin metsiköihin.
Resumo:
In Minkowski space, an accelerated reference frame may be defined as one that is related to an inertial frame by a sequence of instantaneous Lorentz transformations. Such an accelerated observer sees a causal horizon, and the quantum vacuum of the inertial observer appears thermal to the accelerated observer, also known as the Unruh effect. We argue that an accelerating frame may be similarly defined (i.e. as a sequence of instantaneous Lorentz transformations) in noncommutative Moyal spacetime, and discuss the twisted quantum field theory appropriate for such an accelerated observer. Our analysis shows that there are several new features in the case of noncommutative spacetime: chiral massless fields in (1 + 1) dimensions have a qualitatively different behavior compared to massive fields. In addition, the vacuum of the inertial observer is no longer an equilibrium thermal state of the accelerating observer, and the Bose-Einstein distribution acquires.-dependent corrections.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}
Resumo:
In this dissertation I study language complexity from a typological perspective. Since the structuralist era, it has been assumed that local complexity differences in languages are balanced out in cross-linguistic comparisons and that complexity is not affected by the geopolitical or sociocultural aspects of the speech community. However, these assumptions have seldom been studied systematically from a typological point of view. My objective is to define complexity so that it is possible to compare it across languages and to approach its variation with the methods of quantitative typology. My main empirical research questions are: i) does language complexity vary in any systematic way in local domains, and ii) can language complexity be affected by the geographical or social environment? These questions are studied in three articles, whose findings are summarized in the introduction to the dissertation. In order to enable cross-language comparison, I measure complexity as the description length of the regularities in an entity; I separate it from difficulty, focus on local instead of global complexity, and break it up into different types. This approach helps avoid the problems that plagued earlier metrics of language complexity. My approach to grammar is functional-typological in nature, and the theoretical framework is basic linguistic theory. I delimit the empirical research functionally to the marking of core arguments (the basic participants in the sentence). I assess the distributions of complexity in this domain with multifactorial statistical methods and use different sampling strategies, implementing, for instance, the Greenbergian view of universals as diachronic laws of type preference. My data come from large and balanced samples (up to approximately 850 languages), drawn mainly from reference grammars. The results suggest that various significant trends occur in the marking of core arguments in regard to complexity and that complexity in this domain correlates with population size. These results provide evidence that linguistic patterns interact among themselves in terms of complexity, that language structure adapts to the social environment, and that there may be cognitive mechanisms that limit complexity locally. My approach to complexity and language universals can therefore be successfully applied to empirical data and may serve as a model for further research in these areas.
Resumo:
Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
Resumo:
We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4 pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.
Resumo:
We consider the problem of wireless channel allocation to multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. Each metric sequence can be Markov. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.