949 resultados para Joseph Home Co.
Resumo:
In pursuit of newer and more effective contrast agents for magnetic resonance imaging, we report in this article the use of biocompatible chitosan-coated ferrite nanoparticles of different kinds with a view to determine their potential applications as the contrast agents in the field of nuclear magnetic resonance. The single-phase ferrite particles were synthesized by chemical co-precipitation (CoFe2O4 and Fe3O4) and by applying ultrasonic vibration (CoFe2O4 and Co0.8Zn0.2Fe2O4). Although magnetic anisotropy of CoFe2O4 nanoparticle leads to finite coercivity even for nanoensembles, it has been reduced significantly to a minimum level by applying ultrasonic vibration. Fe3O4 synthesized by chemical co-precipitation yielded particles which already possess negligible coercivity and remanence. Substitution of Co by Zn in CoFe2O4 increases the magnetization significantly with a small increase in coercivity and remanence. Particles synthesized by the application of ultrasonic vibration leads to the higher values of T-2 relaxivities than by chemical coprecipitation. We report that the T-2 relaxivities of these particles are of two orders of magnitude higher than corresponding T-1 relaxivities. Thus, these particles are evidently suitable as contrast agent for T-2 weighted MR images.
Resumo:
Reversible addition-fragmentation chain transfer polymerization at 70 A degrees C in N,N-dimethylformamide was used to prepare poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers in various compositions to afford well-defined polymers with pre-determined molecular weight, narrow molecular weight distribution, and precise chain end structure. The copolymer compositions were determined by H-1 NMR spectroscopy. The reactivity ratios of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were calculated as r (NIPAM) = 0.838 and r (DMA) = 1.105, respectively, by the extended Kelen-Tudos method at high conversions. The lower critical solution temperature of PNIPAM can be altered by changing the DMA content in the copolymer chain. Differential scanning calorimetry and thermogravimetric analysis at different heating rates were carried out on these copolymers to understand the nature of thermal degradation and to determine its kinetics. Different kinetic models were applied to estimate various parameters like the activation energy, the order, and the frequency factor. These studies are important to understand the solid state polymer degradation of N-alkyl substituted polymers, which show great potential in the preparation of miscible polymer blends due to their ability to interact through hydrogen bonding.
Resumo:
Diffusion parameters such as the interdiffusion coefficients and the ratio of the tracer diffusion coefficients are calculated in the Co2Ta Laves phase. The activation energy for the interdiffusion coefficients is calculated as 186 +/- 29 kJ/mol. The ratio of tracer diffusion coefficients indicates that Co has higher diffusion rate than that of Ta. This is explained with the help of possible point defects and the crystal structure of the phase: The phase boundary compositions measured in this study is different from the compositions published previously. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
Branched CNTs with nitrogen doped/un-doped intratubular junctions have been synthesized by a simple one-step co-pyrolysis of hexamethylenetetramine and benzene. The difference in the vapor pressure and the insolubility of the precursors are the keys for the formation of the branched intratubular junctions. The junctions behave like Schottky diodes with nitrogen-doped portion as metal and un-doped portion as p-type semiconductor. The junctions also behave like p-type field effect transistors with a very large on/off ratio.
Resumo:
The thermal transitions in the copolymer of 1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) was investigated to understand its use in microstereolithography. The glass transition temperature and the effect of interaction on this transition process was investigated by means of temperature modulated differential scanning calorimetry (TMDSC). The heat capacities were determined and PHDDA rich phases showed lower heat capacity than PMMA rich phases. The frequency dependence of glass transitions were studied by varying the modulation period of TMDSC and confirmed by dielectric relaxation spectroscopy. Vogel Fulcher Tammann Hesse (VFTH) parameters of homo and copolymers have also been reported.
Resumo:
We report on the synthesis, microstructure and thermal expansion studies on Ca0 center dot 5 + x/2Sr0 center dot 5 + x/2Zr4P6 -aEuro parts per thousand 2x Si-2x O-24 (x = 0 center dot 00 to 1 center dot 00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0 center dot 37. For x a parts per thousand yen 0 center dot 5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 A degrees C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0 center dot 75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0 center dot 00 to 0 center dot 37 and then decreases for x > 0 center dot 37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.
Resumo:
Photoassisted electrolysis of water is considered as an effective way of storing solar energy in the form of hydrogen fuel. This overall reaction involves the oxidation of water to oxygen at the anode and the reduction of protons to hydrogen at the cathode. Cobalt-phosphate-based catalyst (Co-Pi) is a potentially useful material for oxygen evolution reaction. In the present study, electrochemical deposition of Co-Pi catalyst is carried out on Au-coated quartz crystal from 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co2+ ion, along with the simultaneous measurement of mass changes at the electrode surface. Cyclic voltammograms and mass variations are recorded during the course of deposition. A current peak is observed at 0.92 V vs Ag/AgCl, 3 M KCl corresponding to oxidation of Co2+ ion. The mass of the electrode starts increasing at this potential, suggesting the deposition of a Co(III)-based insoluble product on the electrode surface. The stability of the catalyst is also studied at several potentials in both buffered and nonbuffered electrolyte by monitoring the real-time mass variations.
Resumo:
The blending of perfluorinated bile ester derivatives with the gelator 2,3-didecyloxyanthracene (DDOA) yields a new class of hybrid organo- and aerogels displaying a combination of optical and mechanical properties that differ from those of pure gels. Indeed, the nanofibers constituting the hybrid organogels emit polarized blue light and display dichroic near-UV absorption via the achiral DDOA molecules, thanks to their association with a chiral bile ester. Moreover, the thermal stability and the mechanical yield stress of the mixed organogels in DMSO are enhanced for blends of DDOA with the deoxycholic gelator (DC11) having a C-11 chain, as compared to the pure components' gels. When the chain length of the ester is increased to C-13 (DC13) a novel compound for aerogel formation directly in scCO(2) is obtained under the studied conditions. A mixture of this compound with DDOA is also able to gelate scCO(2) leading to novel composite aerogel materials. As revealed by SAXS measurements, the hybrid and the pure DDOA and DC13 aerogels display cell parameters that are very similar. These SAXS experiments suggest that crystallographic conditions are very favorable for the growth of hybrid molecular arrangements in which DDOA and DC13 units could be interchanged. Specific molecular interactions between two components are not always a pre-requisite condition for the formation of a hybrid nanostructured material in which the components mutually induce properties.
Resumo:
Electrodeposition of Co-W alloy coatings has been carried out with DC and PC using gluconate bath at different pH. These coatings are characterized for their structure, morphology and chemical composition by X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy (XPS). Alloy coatings plated at pH8 are crystalline, whereas coatings electrodeposited at pH5 are nanocrystalline in nature. XPS studies have demonstrated that as-deposited alloy plated at pH8 with DC contain only Co2+ and W6+ species, whereas that alloy plated at pH5 has significant amount of Co-0 and W-0 along with Co2+ and W6+ species. Again, Co2+ and W6+ are main species in all as-deposited PC plated alloys in both pH. Co-0 concentration increases upon successive sputtering of all alloy coatings. In contrast, mainly W6+ species is detected in the following layers of all alloys plated with PC. Alloys plated at pH5 show higher microhardness compared to their pH8 counterparts.
Resumo:
Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.
Resumo:
IR spectroscopy has been widely employed to distinguish between different crystal forms such as polymorphs, clathrates, hydrates and co-crystals. IR has been used to monitor co-crystal formation and single synthon detection. In this work, we have developed a strategy to identify multiple supramolecular synthons in polymorphs and co-crystals with this technique. The identification of multiple synthons in co-crystals with IR is difficult for several reasons. In this paper, a four step method involving well assigned IR spectral markers that correspond to bonds in a synthon is used. IR spectra of three forms of the co-crystal system, 4-hydroxybenzoic acid: 4,4'-bipyridine (2 : 1), show clear differences that may be attributed to differences in the synthon combinations existing in the forms (synthon polymorphism). These differences were picked out from the three IR spectra and the bands analysed and assigned to synthons. Our method first identifies IR marker bands corresponding to (covalent) bonds in known/model crystals and then the markers are mapped in known co-crystals having single synthons. Thereafter, the IR markers are queried in known co-crystals with multiple synthons. Finally they are queried in unknown co-crystals with multiple synthons. In the last part of the study, the N-H stretching absorptions of primary amides that crystallize with the amide dimers linked in a ladder like chain show two specific absorptions which are used as marker absorptions and all variations of this band structure have been used to provide details on the environment around the dimer. The extended dimer can accordingly be easily distinguished from the isolated dimer.
Resumo:
We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.