971 resultados para Jet propulsion
Resumo:
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.
Resumo:
The point-by-point properties of an ammonia/air opposed-reacting-jet flowfield are described by solving the governing partial differential elliptic equations. Analytical descriptions of the reacting flowfield are compared to experimentally measured profiles of temperature and composition. Calculated distributions of stream function, temperature and fuel mole fraction are also presented. © 1972, Taylor & Francis Group, LLC. All rights reserved.
Resumo:
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70\% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
Resumo:
Depuis le lancement du premier satellite Spoutnik 1 en 1957, l’environnement spatial est de plus en plus utilisé et le nombre de débris orbitaux se multiplie naturellement, soit par des explosions, des collisions ou tout simplement par les opérations normales des satellites. Au-delà d'un certain seuil, la densité des débris orbitaux risque de créer une réaction en chaîne incontrôlée : l’effet Kessler. L’élimination des débris orbitaux en basse altitude permettrait de limiter cette réaction et ainsi de préserver l’environnement spatial afin de pouvoir l’utiliser de façon sécuritaire. L’élimination des débris orbitaux est une opération complexe et coûteuse. Elle consiste à déplacer des objets spatiaux inactifs vers une orbite basse pour mener à leur désintégration dans la basse atmosphère terrestre. En utilisant les perturbations orbitales, il est possible de réduire le coût du carburant requis pour effectuer les manœuvres orbitales nécessaires à l’élimination de ces débris. L'objectif principal de cette étude consiste à développer une procédure et une stratégie de commande autonome afin de modifier l'orbite des satellites non opérationnels (débris) pour mener à leur désintégration naturelle tout en optimisant les facteurs carburant et temps. Pour ce faire, un modèle d’atmosphère basé sur le modèle de Jacchia (1977) est développé. Un modèle de la dynamique du satellite inclut aussi les perturbations principales, soit : traînée atmosphérique, non sphéricité et distribution non uniforme de la masse de la Terre. Ces modèles ainsi qu'un algorithme de commande optimale pour un propulseur électrique sont développés et le tout est validé par simulations numériques sur Matlab/Simulink. Au terme de cette étude, les conditions optimales dans lesquelles il faut laisser un débris afin qu'il se désintègre dans la basse atmosphère de la Terre en quelques semaines seront données (type d'orbite : altitude, inclinaison, etc.) ainsi que le coût en carburant pour une telle mission. Cette étude permettra de prouver qu'il est possible de réaliser des missions d'élimination des débris orbitaux tout en réduisant les coûts associés aux manœuvres orbitales par l'utilisation des perturbations naturelles de l'environnement.
Resumo:
Current space exploration has transpired through the use of chemical rockets, and they have served us well, but they have their limitations. Exploration of the outer solar system, Jupiter and beyond will most likely require a new generation of propulsion system. One potential technology class to provide spacecraft propulsion and power systems involve thermonuclear fusion plasma systems. In this class it is well accepted that d-He3 fusion is the most promising of the fuel candidates for spacecraft applications as the 14.7 MeV protons carry up to 80% of the total fusion power while ‘s have energies less than 4 MeV. The other minor fusion products from secondary d-d reactions consisting of 3He, n, p, and 3H also have energies less than 4 MeV. Furthermore there are two main fusion subsets namely, Magnetic Confinement Fusion devices and Inertial Electrostatic Confinement (or IEC) Fusion devices. Magnetic Confinement Fusion devices are characterized by complex geometries and prohibitive structural mass compromising spacecraft use at this stage of exploration. While generating energy from a lightweight and reliable fusion source is important, another critical issue is harnessing this energy into usable power and/or propulsion. IEC fusion is a method of fusion plasma confinement that uses a series of biased electrodes that accelerate a uniform spherical beam of ions into a hollow cathode typically comprised of a gridded structure with high transparency. The inertia of the imploding ion beam compresses the ions at the center of the cathode increasing the density to the point where fusion occurs. Since the velocity distributions of fusion particles in an IEC are essentially isotropic and carry no net momentum, a means of redirecting the velocity of the particles is necessary to efficiently extract energy and provide power or create thrust. There are classes of advanced fuel fusion reactions where direct-energy conversion based on electrostatically-biased collector plates is impossible due to potential limits, material structure limitations, and IEC geometry. Thermal conversion systems are also inefficient for this application. A method of converting the isotropic IEC into a collimated flow of fusion products solves these issues and allows direct energy conversion. An efficient traveling wave direct energy converter has been proposed and studied by Momota , Shu and further studied by evaluated with numerical simulations by Ishikawa and others. One of the conventional methods of collimating charged particles is to surround the particle source with an applied magnetic channel. Charged particles are trapped and move along the lines of flux. By introducing expanding lines of force gradually along the magnetic channel, the velocity component perpendicular to the lines of force is transferred to the parallel one. However, efficient operation of the IEC requires a null magnetic field at the core of the device. In order to achieve this, Momota and Miley have proposed a pair of magnetic coils anti-parallel to the magnetic channel creating a null hexapole magnetic field region necessary for the IEC fusion core. Numerically, collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 95% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A while collimation of electrons with stabilization coil present was demonstrated to reach 69% at a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A. Experimentally, collimation of electrons with stabilization coil present was demonstrated experimentally to be 35% at 100 eV and reach a peak of 39.6% at 50eV with a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A and collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 49% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A 6.4% of the 300eV electrons’ initial velocity is directed to the collector plates. The remaining electrons are trapped by the collimator’s magnetic field. These particles oscillate around the null field region several hundred times and eventually escape to the collector plates. At a solenoid voltage profile of 7 Volts, 100 eV electrons are collimated with wall and perpendicular component losses of 31%. Increasing the electron energy beyond 100 eV increases the wall losses by 25% at 300 eV. Ultimately it was determined that a field strength deriving from 9.5 MAT/m would be required to collimate 14.7 MeV fusion protons from d-3He fueled IEC fusion core. The concept of the proton collimator has been proven to be effective to transform an isotropic source into a collimated flow of particles ripe for direct energy conversion.
Resumo:
Fondo Margaritainés Restrepo
Resumo:
When components of a propulsion system are exposed to elevated flow temperatures there is a risk for catastrophic failure if the components are not properly protected from the thermal loads. Among several strategies, slot film cooling is one of the most commonly used, yet poorly understood active cooling techniques. Tangential injection of a relatively cool fluid layer protects the surface(s) in question, but the turbulent mixing between the hot mainstream and cooler film along with the presence of the wall presents an inherently complex problem where kinematics, thermal transport and multimodal heat transfer are coupled. Furthermore, new propulsion designs rely heavily on CFD analysis to verify their viability. These CFD models require validation of their results, and the current literature does not provide a comprehensive data set for film cooling that meets all the demands for proper validation, namely a comprehensive (kinematic, thermal and boundary condition data) data set obtained over a wide range of conditions. This body of work aims at solving the fundamental issue of validation by providing high quality comprehensive film cooling data (kinematics, thermal mixing, heat transfer). 3 distinct velocity ratios (VR=uc/u∞) are examined corresponding to wall-wake (VR~0.5), min-shear (VR ~ 1.0), and wall-jet (VR~2.0) type flows at injection, while the temperature ratio TR= T∞/Tc is approximately 1.5 for all cases. Turbulence intensities at injection are 2-4% for the mainstream (urms/u∞, vrms/u∞,), and on the order of 8-10% for the coolant (urms/uc, vrms/uc,). A special emphasis is placed on inlet characterization, since inlet data in the literature is often incomplete or is of relatively low quality for CFD development. The data reveals that min-shear injection provides the best performance, followed by the wall-jet. The wall-wake case is comparably poor in performance. The comprehensive data suggests that this relative performance is due to the mixing strength of each case, as well as the location of regions of strong mixing with respect to the wall. Kinematic and thermal data show that strong mixing occurs in the wall-jet away from the wall (y/s>1), while strong mixing in the wall-wake occurs much closer to the wall (y/s<1). Min-shear cases exhibit noticeably weaker mixing confined to about y/s=1. Additionally to these general observations, the experimental data obtained in this work is analyzed to reveal scaling laws for the inlets, near-wall scaling, detecting and characterizing coherent structures in the flow as well as to provide data reduction strategies for comparison to CFD models (RANS and LES).
Resumo:
"This research was supported by the McDonnell Aircraft Corporation under Contract no. 6140-20 P.O. 7S4899-R."
Resumo:
"Purdue Research Foundation. Research project no. 1255. Project Ae-25. This research was supported by the National Advisory Committee for Aeronautics, Washington, D. C., under Contract no. NAW-6465."
Resumo:
Quelques sites archéologiques comme Olympie, Stymphalos et Olynthe possèdent respectivement un répertoire faisant l’étude des armes de jet retrouvées durant une série de campagnes de fouilles archéologiques. Parmi ces indexes, figurent fréquemment des pointes de flèche, des balles de fronde et des saurotères (contrepoids de lance ou de javelot) provenant de différentes périodes historiques gréco-romaines. À travers les 20e et 21e siècle de notre ère, des spécialistes comme D. Robinson (1931), A. Snodgrass (1964), H. Baitinger (2001), C. Hagerman (2014) dédièrent une partie de leur expertise pour produire des synthèses sur ces objets jadis négligés. Ainsi, ils parvinrent à créer de grandes encyclopédies commentées composées de projectiles retrouvés en sol grec. À l’aide de ces bases de données, les archéologues militaires sont en mesure d’établir des datations et l’origine prétendue de certains types de projectiles. Jusqu’en 2015, les artéfacts militaires trouvés sur le site archéologique d’Argilos n’avaient jamais fait l’objet d’une étude de synthèse. D’abord, inspiré par de publications semblables, ces projectiles furent soumis à un inventaire sous forme de catalogue. Au total, deux types de balles de fronde en plomb, onze types de pointes de flèche et un type de saurotère furent identifiés. Finalement, ce nouveau contenu fut assujetti à des analyses comparatives avec d’autres sites archéologiques possédant des données similaires. Les conclusions découlant de ces analogies donnèrent naissance à la première typologie des armes de jet argilienne. Certes, les analyses se heurtèrent à certains obstacles, notamment à une compréhension de la quasi-inexistence d'une pointe de flèche typiquement "grecque" et à la confusion systématique quant à la distinction entre un saurotère et une pointe de javelot, voire possiblement un carreau de gastraphétès (une sorte d’arbalète imposante utilisée lors de sièges durant le 4e siècle av. J.-C.). En partie, ceci découle de l'historique d'échanges entre la Grèce et les autres peuples méditerranéens, balkaniques et orientaux. En outre, de nombreuses réformes militaires des périodes archaïque et classique provoquèrent une évolution constante sur les aspects stratégiques et les tactiques militaires. Considérant ces facteurs parmi tant d'autres et le fait qu'Argilos ait été une fondation grecque en territoire thraco-macédonien, la possibilité d'influence "étrangère" devient alors prépondérante sur la typologie des projectiles argiliens publiée dans le présent mémoire. Avec beaucoup d’espoir, nous croyons sans équivoque que ce travail de recherche contribuera grandement non seulement à l’histoire d’Argilos, mais aussi à l’étude des projectiles en Grèce du nord.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
The aim of this thesis is to test the ability of some correlative models such as Alpert correlations on 1972 and re-examined on 2011, the investigation of Heskestad and Delichatsios in 1978, the correlations produced by Cooper in 1982, to define both dynamic and thermal characteristics of a fire induced ceiling-jet flow. The flow occurs when the fire plume impinges the ceiling and develops in the radial direction of the fire axis. Both temperature and velocity predictions are decisive for sprinklers positioning, fire alarms positions, detectors (heat, smoke) positions and activation times and back-layering predictions. These correlative models will be compared with a 3D numerical simulation software CFAST. For the results comparison of temperature and velocity near the ceiling. These results are also compared with a Computational Fluid Dynamics (CFD) analysis, using ANSYS FLUENT.
Resumo:
This research investigated annular field reversed configuration (AFRC)devices for high power electric propulsion by demonstrating the acceleration of these plasmoids using an experimental prototype and measuring the plasmoid's velocity, impulse, and energy efficiency. The AFRC plasmoid translation experiment was design and constructed with the aid of a dynamic circuit model. Two versions of the experiment were built, using underdamped RLC circuits at 10 kHz and 20 kHz. Input energies were varied from 100 J/pulse to 1000 J/pulse for the 10 kHz bank and 100 J/pulse for the 20 kHz bank. The plasmoids were formed in static gas fill of argon, from 1 mTorr to 50 mTorr. The translation of the plasmoid was accomplished by incorporating a small taper into the outer coil, with a half angle of 2°. Magnetic field diagnostics, plasma probes, and single-frame imaging were used to measure the plasmoid's velocity and to diagnose plasmoid behavior. Full details of the device design, construction, and diagnostics are provided in this dissertation. The results from the experiment demonstrated that a repeatable AFRC plasmoid was produced between the coils, yet failed to translate for all tested conditions. The data revealed the plasmoid was limited in lifetime to only a few (4-10) μs, too short for translation at low energy. A global stability study showed that the plasma suffered a radial collapse onto the inner wall early in its lifecycle. The radial collapse was traced to a magnetic pressure imbalance. A correction made to the circuit was successful in restoring an equilibrium pressure balance and prolonging radial stability by an additional 2.5 μs. The equilibrium state was sufficient to confirm that the plasmoid current in an AFRC reaches a steady-state prior to the peak of the coil currents. This implies that the plasmoid will always be driven to the inner wall, unless it translates from the coils prior to peak coil currents. However, ejection of the plasmoid before the peak coil currents results in severe efficiency losses. These results demonstrate the difficulty in designing an AFRC experiment for translation as balancing the different requirements for stability, balance, and efficient translation can have competing consequences.