994 resultados para Jacobson, Henriette Rebecca
Resumo:
Esophageal adenocarcinoma is a cancer with rising incidence and poor survival. Most such cancers arise in a specialized intestinal metaplastic epithelium, which is diagnostic of Barrett's esophagus. In a genome-wide association study, we compared esophageal adenocarcinoma cases (n = 2,390) and individuals with precancerous Barrett's esophagus (n = 3,175) with 10,120 controls in 2 phases. For the combined case group, we identified three new associations. The first is at 19p13 (rs10419226: P = 3.6 × 10(-10)) in CRTC1 (encoding CREB-regulated transcription coactivator), whose aberrant activation has been associated with oncogenic activity. A second is at 9q22 (rs11789015: P = 1.0 × 10(-9)) in BARX1, which encodes a transcription factor important in esophageal specification. A third is at 3p14 (rs2687201: P = 5.5 × 10(-9)) near the transcription factor FOXP1, which regulates esophageal development. We also refine a previously reported association with Barrett's esophagus near the putative tumor suppressor gene FOXF1 at 16q24 and extend our findings to now include esophageal adenocarcinoma.
Resumo:
Rationale: Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the Acute Respiratory Distress Syndrome (ARDS). In animal models of ARDS, Keratinocyte Growth Factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.
Objectives: To test whether KGF can attenuate alveolar injury in a human model of ARDS.
Methods: Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50μg lipopolysaccharide. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.
Measurements and Main Results: KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of Surfactant Protein D (SP-D), MMP-9, IL-1Ra, GM-CSF and CRP. In vitro, BAL fluid from KGF-treated subjects (KGF BAL) inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF pre-treated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.
Conclusions: KGF treatment increases BAL SP-D, a marker of type II alveolar epithelial cell proliferation in a human model of ALI. Additionally KGF increases alveolar concentrations of the anti-inflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF).
Resumo:
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.
Resumo:
Identity is relational and a construct, and is expressed in a myriad of ways. For example, material culture and its pluralist meanings have been readily manipulated by humans in a prehistoric context in order to construct personal and group identities. Artefacts were often from or reminiscent of far-flung places and were used to demonstrate membership of an (imagined) regional, or European community. Earthworks frequently archive maximum visual impact through elaborate ramparts and entrances with the minimum amount of effort, indicating that the construction of identities were as much in the eye of the perceivor, as of the perceived. Variations in domestic architectural style also demonstrate the malleability of identity, and the prolonged, intermittent use of particular places for specific functions indicates that the identity of place is just as important in our archaeological understanding as the identity of people. By using a wide range of case studies, both temporally and spatially, these thought processes may be explored further and diachronic and geographic patterns in expressions of identity investigated.
Resumo:
Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10,337 cases and 11,174 controls (OR=1.10; p-value=3.79×10(-5)). Thus, it appears that rare and common variants in a single gene - FBN2 - can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.
Resumo:
We tested the hypothesis that developmental precursors to aggression are apparent in infancy. Up to three informants rated 301 firstborn infants for early signs of anger, hitting and biting; 279 (93%) were assessed again as toddlers. Informants' ratings were validated by direct observation at both ages. The precursor behaviours were significantly associated with known risk factors for high levels of aggressiveness. Individual differences were stable from early infancy to the third year and predicted broader conduct problems. These findings suggest that some individuals set forth on the trajectory to high levels of aggression by 6 months of age. The findings have implications for developmental studies of aggression, clinical prevention and intervention strategies, and theoretical considerations regarding the detection of precursors in different domains of development.
Resumo:
Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.
Resumo:
This overview will demonstrate that cough is a common and potentially expensive health-care problem. Improvement in the quality of care of those with cough has been the focus of study for a variety of disciplines in medicine. The purpose of the Cough Guideline and Expert Panel is to synthesize current knowledge in a form that will aid clinical decision-making for the diagnosis and management of cough across disciplines and also identify gaps in knowledge and treatment options.
Resumo:
Introduction: The application of light as a stimulus in pharmaceutical systems and the associated ability to provide precise spatiotemporal control over location, wavelength and intensity, allowing ease of external control independent of environmental conditionals, has led to its increased use. Of particular note is the use of light with photosensitisers.
Areas covered: Photosensitisers are widely used in photodynamic therapy to cause a cidal effect towards cells on irradiation due to the generation of reactive oxygen species. These cidal effects have also been used to treat infectious diseases. The effects and benefits of photosensitisers in the treatment of such conditions are still being developed and further realised, with the design of novel delivery strategies. This review provides an overview of the realisation of the pharmaceutically relevant uses of photosensitisers, both in the context of current research and in terms of current clinical application, and looks to the future direction of research.
Expert opinion: Substantial advances have been and are being made in the use of photosensitisers. Of particular note are their antimicrobial applications, due to absence of resistance that is so frequently associated with conventional treatments. Their potency of action and the ability to immobilise to polymeric supports is opening a wide range of possibilities with great potential for use in healthcare infection prevention strategies.
Resumo:
Recently, we described a series of novel porphyrin-impregnated hydrogels capable of producing microbicidal singlet oxygen (1O2) on photoactivation. Indirect assessment of the efficacy of 1O2 production from such hydrogels has been previously described using microbiological techniques, but here we report a novel, direct method of quantification. Anthracene-9,10-dipropionic acid (ADPA) is known to irreversibly form an endoperoxide on reaction with 1O2, causing photobleaching of its absorbance band at approximately 378 nm. Here, the reaction of this probe is exploited in a novel way to provide a simple, inexpensive, and convenient measurement of 1O2 generation from the surface of porphyrin-incorporated photosensitising hydrogels, with the ability to account for effects due to hydrogel porosity. Ingress of the probe into the materials was observed, with rates of up to 3.83 x 103 s-1. This varied by up to 200-fold with material composition and surface modification. Rates of 1O2 generation in these porphyrin-incorporated hydrogels, after compensating for ADPA ingress, ranged from 1.86x103 – 5.86x103 s-1. This work demonstrates a simple and straightforward method for direct 1O2 quantification from porous materials, with general utility.
Resumo:
An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.
Resumo:
A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.