977 resultados para Isotopic substitution
Resumo:
The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.
Resumo:
Helium isotope composition as an indicator of the mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El'brus and Kazbek volcanoes. In the western segment of the orogen ratios of 3He/4He = R_corr vary from 46x10**-8 to 114x10**-8 (from 0.33 to 0.81 R_atm, where R_atm = 1.4x10**-6 is the atmospheric ratio). They are substantially lower relative to ratios in the vicinity of El'brus and Kazbek and close to those in samples from the central segment (from 70x10**-8 to 134x10**-8 (from 0.50 to 0.96 R_atm), as well as to ratios previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, concentration of 3He in them is notably higher than its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where 3He/4He varies from 1.4x10**-8 to 2.8x10**-8 (from 0.01 to 0.02 R_atm). Nitrogen-methane gas from northern piedmonts of the western Caucasus also contains nonatmogenic components including radiogenic 40Ar (40Ar/36Ar = 900), excessive nitrogen (~87% of total N2 concentration in sample) and mantle He. These data specify distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.
Resumo:
Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
Concentrations of mercury (Hg) have increased slowly in landlocked Arctic char over a 10- to 15-year period in the Arctic. Fluxes of Hg to sediments also show increases in most Arctic lakes. Correlation of Hg with trophic level (TL) was used to investigate and compare biomagnification of Hg in food webs from lakes in the Canadian Arctic sampled from 2002 to 2007. Concentrations of Hg (total Hg and methylmercury [MeHg]) in food webs were compared across longitudinal and latitudinal gradients in relation to d13C and d15N in periphyton, zooplankton, benthic invertebrates, and Arctic char of varying size-classes. Trophic magnification factors (TMFs) were calculated for the food web in each lake and related to available physical and chemical characteristics of the lakes. The relative content of MeHg increased with trophic level from 4.3 to 12.2% in periphyton, 41 to 79% in zooplankton, 59 to 72% in insects, and 74 to 100% in juvenile and adult char. The d13C signatures of adult char indicated coupling with benthic invertebrates. Cannibalism among char lengthened the food chain. Biomagnification was confirmed in all 18 lakes, with TMFs ranging from 3.5 ± 1.1 to 64.3 ± 0.8. Results indicate that TMFs and food chain length (FCL) are key factors in explaining interlake variability in biomagnification of [Hg] among different lakes.
Resumo:
The concentrations of mercury (Hg) and other trace metals (Ni, Cu, Zn, Mo, Ba, Re, U) and the Hg isotopic composition were examined across a dramatic redox and productivity transition in a mid-Pleistocene Mediterranean Sea sapropel sequence. Characteristic trace metal enrichment in organic-rich layers was observed, with organic-rich sapropel layers ranging in Hg concentration from 314 to 488 ng/g (avg = 385), with an average enrichment in Hg by a factor of 5.9 compared to organic-poor background sediments, which range from 39 to 94 ng/g Hg (avg = 66). Comparison of seawater concentrations and sapropel accumulations of trace metals suggests that organic matter quantitatively delivers Hg to the seafloor. Near complete scavenging of Hg from the water column renders the sapropel Hg isotopic composition representative of mid-Pleistocene Mediterranean seawater. Sapropels have an average d202Hg value of -0.91 per mil ± 0.15 per mil (n = 5, 1 SD) and D199Hg value of 0.11 per mil ± 0.03 per mil (n = 5, 1 SD). Background sediments have an average d202Hg of -0.76 per mil ± 0.16 per mil (n = 5, 1 SD) and D199Hg of 0.05 per mil ± 0.01 per mil (n = 5, 1 SD), which is indistinguishable from the sapropel values. We suggest that the sapropel isotopic composition is most representative of the mid-Pleistocene Tyrrhenian Sea.
Resumo:
Stable oxygen and carbon isotope measurements (d18O and d13C) of planktonic and benthic foraminifers were conducted to assess the temperature history and circulation patterns over Shatsky Rise during the Paleocene and Eocene. A record of Mg/Ca for benthic foraminifers was also constructed in order to better determine the relative influence of temperature, salinity, and/or ice volume upon the benthic d18O record. Isotopic analyses were carried out on several planktonic taxa (Acarinina, Morozovella, Globigerinatheka, Praemurica, and Subbotina) as well as several benthic taxa (Nuttalides, Oridorsalis, Cibicidoides, Gavelinella, and Lenticulina). Elemental analyses were restricted to three benthic taxa: Nuttalides, Oridorsalis, and Gavelinella. All specimens were derived from the composite sediment section recovered from Ocean Drilling Program Site 1209 on the Southern High of Shatsky Rise.