993 resultados para Iron, Aluminium, Spectrophotometry, Kinetics, Chemometrics-PLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive destruction of parasitized splenic macrophages was histologically observed at the height of a virulent infection caused by Trypanosoma cruzi (Y strain) in the mouse. This was coincident with a sudden drop in parasitemic curve. Most of the animals died at this point, probably due to the liberation of toxic products, such as TNF, following the massive destruction of parasitized cells. However, parasitized-cell destruction indicated the transition from susceptibility to resistance. Although it has been extensively studied in vitro, this study contributes with the morphological counterpart observed in vivo by optical and electron microscopy. When infected animals were specifically treated during early infection transition to chronic phase was immediately observed without splenic parasitism. Animals that apparently recovered from massive cell-destruction in the spleen showed evidences of a rapid restoration of splenic architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria causes important functional alterations of the immune system, but several of them are poorly defined. To evaluate thoroughly the natural killer cell cytotoxicity in patients with malaria, we developed a technique capable to assess both the dynamics and the kinetics of the process. For the kinetics assay, human peripheral blood mononuclear cells were previously incubated with K562 cells and kept in agarose medium, while for the dynamics assay both cells were maintained in suspension. NK activity from patients with vivax malaria presented a kinetics profile faster than those with falciparum malaria. NK cytotoxicity positively correlated with parasitemia in falciparum malaria. The dynamics of NK cytotoxicity of healthy individuals was elevated at the beginning of the process and then significantly decreased. In contrast, malaria patients presented successive peaks of NK activity. Our results confirmed the occurrence of alteration in NK cell function during malaria, and added new data about the NK cytotoxicity process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia - PTDC/AGR-­AAM/101643/2008 NanoDC ; SFRH/BD/76070/2011 ; FP7-­PEOPLE-­IRSES-­2010-­269289-­ ELECTROACROSS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the kinetics of cytokine production by mononuclear cells from 17 patients who had been treated for paracoccidioidomycosis, using the stimulus of gp43 peptide groups (43kDa glycoprotein of Paracoccidioides brasiliensis) at 0.1 and 1µM, gp43 (1µg/ml) and crude Paracoccidioides brasiliensis antigen (PbAg; 75µg/ml). IFN-gamma production was a maximum at 144 hours in relation to the G2 and G8 peptide groups at 1µM and was greatest at 144 hours when stimulated by gp43 and by PbAg. The maximum TNF-alpha production was at 144 hours for the G2 group (0.1µM) and for gp43. IL-10 production was highest after 48 and 72 hours for G7 and G6 at 1µM, respectively. We also suggest the best time for analysis of IL4 production. These results may contribute towards future studies with gp43 peptides and encourage further investigations with the aim of understanding the influence of these peptides on the production of inflammatory and regulatory cytokines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sociedade Polis Litoral Ria Formosa,Projects Quasus and Project Toxigest financed by PROMAR (2007-2013)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Studies strongly indicate Dientamoeba fragilis as one of the causes of diarrhea in human immunodeficiency virus (HIV) patients. METHODS: The objective of the present study was to evaluate the prevalence of D. fragilis associated with the causes of diarrhea in 82 HIV/ AIDS patients hospitalized at the Instituto de Infectologia Emílio Ribas from September 2006 to November 2008. RESULTS: In total, 105 samples were collected from 82 patients. Unprotected sex was the most frequent cause of HIV infection (46.3%), followed by the use of injectable or non-injectable drugs (14.6%). Patients presented with viral loads of 49-750,000 copies/ mL (average: 73,849 ± 124,850 copies/mL) and CD4 counts ranging of 2-1,306 cells/mm³ (average: 159 ± 250 cells/mm³). On an average, the odds of obtaining a positive result by using the other techniques (Hoffman, Pons and Janer or Lutz; Ritchie) were 2.7 times higher than the chance of obtaining a positive result by using the simplified iron hematoxylin method. Significant differences were found between the methods (p = 0.003). CONCLUSIONS: The other techniques can detect a significantly greater amount of parasites than the simplified iron hematoxylin method, especially with respect to Isospora belli, Cryptosporidium sp., Schistosoma mansoni, and Strongyloides stercoralis, which were not detected using hematoxylin. Endolimax nana and D. fragilis were detected more frequently on using hematoxylin, and the only parasite not found by the other methods was D. fragilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction CD4+CD25+ T lymphocytes have been implicated in the regulation of host inflammatory response against Trypanosoma cruzi, and may be involved in the clinical course of the disease. Methods Peripheral blood mononuclear cells from patients with chronic Chagas disease were cultured in the presence of T. cruzi recombinant antigens and assayed for lymphocytes at distinct time points. Results It was possible to differentiate clinical forms of chronic Chagas disease at days 3 and 5 according to presence of CD4+CD25+ T cells in cell cultures. Conclusions Longer periods of cell culture proved to be potentially valuable for prospective evaluations of CD4+CD25+ T lymphocytes in patients with chronic Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.