933 resultados para Invertebrate availability
Resumo:
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in rum this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the Oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan. Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data), 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan. rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist), and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis. Ceratomyxa shasta. Kudoa spp,, and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans. which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
Resumo:
Trypanosome infections are often difficult to detect by conventional microscopy and their pleomorphy often confounds differential diagnosis. Molecular techniques are now being used to diagnose infections and to determine phylogenetic relationships between species. Complete small subunit rRNA gene sequences were determined for isolates of Trypanosoma chelodina from the Brisbane River tortoise (Emydura signata), the saw-shelled tortoise (Elseya latisternum), and the eastern snake-necked tortoise (Chelodina longicollis) from southeast Queensland, Australia. Partial sequence data were also obtained for T. binneyi from a platypus (Ornithorhynchus anatinus) from Tasmania. Phylogenetic relationships between T. chelodina, T. binneyi and other species were examined by maximum parsimony and likelihood methods. The Australian tortoise and platypus trypanosomes did not exhibit any close phylogenetic relationships with those of mammals, reptiles or amphibians, but were closely related to each other, and to fish trypanosomes. This contra-indicates their co-evolution with their vertebrate hosts but does not exclude co-evolution with different groups of invertebrate vectors, notably insects and leeches.
Resumo:
Tapasin is critical for efficient loading and surface expression of most HLA class I molecules. The high level surface expression of HLA-B*2705 on tapasin-deficient 721.220 cells allowed the influence of this chaperone on peptide repertoire to be examined. Comparison of peptides bound to HLA-B*2705 expressed on tapasin-deficient and -proficient cells by mass spectrometry revealed an overall reduction in the recovery of B*2705-bound peptides isolated from tapasin-deficient cells despite similar yields of B27 heavy chain and beta (2)-microglobulin. This indicated that a proportion of suboptimal ligands were associated with B27, and they were lost during the purification process. Notwithstanding this failure to recover these suboptimal peptides, there was substantial overlap in the repertoire and biochemical properties of peptides recovered from B27 complexes derived from tapasin-positive and -negative cells. Although many peptides were preferentially or uniquely isolated from B*2705 in tapasin-positive cells, a number of species were preferentially recovered in the absence of tapasin, and some of these peptide ligands have been sequenced. In general, these ligands did not exhibit exceptional binding affinity, and we invoke an argument based on lumenal availability and affinity to explain their tapasin independence. The differential display of peptides in tapasin-negative and -positive cells was also apparent in the reactivity of peptide-sensitive alloreactive CTL raised against tapasin-positive and -negative targets, demonstrating the functional relevance of the biochemical observation of changes in peptide repertoire in the tapasin-deficient APC. Overall, the data reveal that tapasin quantitatively and qualitatively influences ligand selection by class I molecules.
Resumo:
Sperm ultrastructure in three representative species of the marine bivalve family Spondylidae (spiny or thorny oysters) is examined and compared with available data on other bivalves, especially other families of the subclass Pteriomorphia. Spondylid spermatozoa are of the externally fertilizing aquasperm. type (ect-aquasperm). The acrosomal vesicle is conical with a deep basal invagination extending almost the full length of the vesicle. Vesicle contents are divisible into an inner, highly electron-dense anterior layer and a less dense posterior layer. The anterior layer is folded back on itself posteriorly and exhibits radiating plates (best developed peripherally). The vesicle rests on, and is partially embedded in, an extensive granular deposit of subacrosomal. material at the nuclear apex. This deposit extends partly into acrosomal vesicle invagination and also fills a broad depression in the anterior of the nucleus. No pre-formed axial rod (perforatorium) is present. The nucleus is round-pyriform and its contents coarsely fibrogranular. At the base of the nucleus, four broad depressions partially accommodate the midpiece mitochondria. The midpiece consists the four spherical mitochondria and the proximal and distal centrioles. The centrioles are arranged at approximately 90degrees to each other, and each consists of nine, angularly-oriented, microtubular triplets embedded in a granular matrix. A short, periodically banded rootlet connects the proximal centriole to the nuclear fossa, whereas the distal centriole, which forms the basal body to the flagellar axoneme, is anchored to the plasma membrane by nine terminally forked satellite fibres. Extensive deposits of putative glycogen rosettes surround the centrioles and mitochondria. The flagellum consists of a 9+2 axoneme sheathed by the plasma membrane. Spondylid spermatozoa strongly resemble those of the Pectinidae, further confirming the traditional view (based on comparative anatomy and shell morphology) of a close relationship between the Spondylidae and the Pectinidae. Differences in acrosomal shape and dimensions were noted between the three species examined, indicating potential taxonomic utility for comparative sperm ultrastructure within the Spondylidae.
Resumo:
Haemochromatosis associated with mutations in the HFE gene is the most common inherited disorder in Caucasian populations. Early diagnosis and treatment allows for normal life expectancy whereas there is considerable morbidity and early mortality in those patients diagnosed late or untreated. Unfortunately, the development of symptoms and signs in haemochromatosis is usually associated with significant iron overload. For this reason, many clinicians and geneticists have advocated population screening. The recent identification of the HFE gene and the availability of a simple DNA-based diagnostic test have led to international debate as to the most cost-effective means of population screening for HFE-associated haemochromatosis. The present paper summarizes the evidence in favour of population screening and analyses the relative advantages of genotypic (DNA test) versus phenotypic (transferrin saturation) testing.
Resumo:
The relative oviposition rate of the parasitoid Fopius arisanus (Sonan) was investigated across three frugivorous tephritid species, Bactrocera tryoni Froggart, Bactrocera jarvisi (Tryon) and Bactrocera cucumis French. Choice and no-choice tests were both used. The suitability of these three species for sustaining larval development and survival to the adult stage was also assessed. Fopius arisanus parasitized all three tephritid species. regardless of the method of exposure, but showed stronger preference for B. tryoni and B. jarvisi over B. cucumis. Superparasitism was extremely rare. Successful development of F. arisanus varied across host species. Bactrocera tryoni yielded significantly more parasitoids than B. jarvisi, but no wasps emerged from B. cucumis puparia. Tests were set up in replicated trials. but results were not homogeneous across trials. We discuss the host relationships of F. arisanus with reference to this variation and in relation to host suitability for larval development.
Resumo:
The aphelinid parasitoid Coccophagus gurneyi Compere has unusual sex-related host relationships. Females are diploid and develop internally within mealybugs Pseudococcus calceolariae (Maskell). Males, in contrast, are haploid and hyperparasitic, developing on primary parasitoid larvae within the mealybugs. Furthermore, males have been claimed to be capable of either internal or external development, depending on the precise site of deposition of the haploid egg. This diversity of developmental pathways could indicate the existence of a sibling-species complex. We therefore quantified the mating and ovipositional behaviour of C. gurneyi, for comparison with that of an undescribed sibling species. We also checked whether the females deposit male eggs in alternative sites. The pattern of mating was found to be typical of mating behaviour in Coccophagus spp. and was consistent among all mating pairs, suggesting that the colony comprised one species. Further, the mating behaviour was significantly different from that of the undescribed sibling species. The site of male egg deposition varied and is apparently dictated by two factors; whether the mealybug is parasitised and, if so, the size of the parasitoid it contains. If the mealybugs were unparasitised or if the parasitoids within the mealybugs were small (< 0.53 mm), male eggs were deposited within the mealybug haemocoel. If the parasitoids were large (> 1.05 mm), male eggs were deposited within the parasitoids. These results support the claim of alternate host relationships and developmental pathways within males of C. gurneyi.
Resumo:
Males of Helicoverpa punctigera (Wallengren) show considerable variation in the number of femoral scales on the prothoracic legs. Such intraspecific variation in adult morphology could indicate the presence of undetected sibling species, or it may be related to larval diet. Helicoverpa putactigera is polyphagous, and different host plant species are likely to represent diets of different quality. Femoral lengths and the numbers of femoral scales on the prothoracic legs were therefore determined from: (i) individuals that had been collected as larvae from various host species in the field; and (ii) individuals that had been laboratory-reared, in split-family tests, on different diets, namely cotton, lucerne, sowthistle and artificial diet. Host plant species (and therefore presumably diet quality) influenced femoral length of H. punctigera males and, perhaps in conjunction with this, the number of femoral scales on the fore leg. The rearing experiment indicated, in addition, that the effect of host plant quality varies with larval stage, and that the pattern of this variation across the immature stages is dependent on host plant species. The recorded variation in the morphology of field-collected H. punctigera males is therefore most readily explained as a consequence of different individuals developing (at least for most of their larval life) on different host plant species, with diet quality varying significantly with species. The relevance of these results for insect developmental studies and evolutionary interpretations of host relationships is outlined.
Resumo:
Understanding the pattern in which adult drosophilids of different species are distributed across and within different vegetation types is necessary for accurate interpretation of their local ecology and diversity. Such studies have been conducted mainly in temperate regions, and there is no basis for extrapolating their conclusions to tropical areas. This study describes the vertical distribution (0-20 m) of drosophilids attracted to banana baits in five different vegetation types in subtropical eastern Australia including open woodland, and rain-forest types. The distribution of most of the 15 common species could be characterized three-dimensionally by vegetation type and height above forest floor. Only one species, Scaptodrosophila lativittata, was common in all vegetation types and it was a canopy species in rain forests and a ground-level species in open woodland. Vertical distribution of some species clearly matched that of their larval hosts, but it did not in others. For example, the fungivore Leucophenga scutellata was mostly trapped well above the forest floor, yet it breeds at ground level, suggesting behavioural mode can influence vertical distributions. We conclude that the vertical dimension, although still poorly understood in relation to drosophilid habitats, needs to be taken into account when conducting and interpreting studies aimed at understanding drosophilid populations and communities in the subtropics.
Resumo:
The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.