942 resultados para Intracytoplasmic Sperm Injection
Resumo:
Because xenon NMR is highly sensitive to the local environment, laser-polarized xenon could be a unique probe of living tissues. Realization of clinical and medical science applications beyond lung airspace imaging requires methods of efficient delivery of laser-polarized xenon to tissues, because of the short spin-lattice relaxation times and relatively low concentrations of xenon attainable in the body. Preliminary results from the application of a polarized xenon injection technique for in vivo 129Xe NMR/MRI are extrapolated along with a simple model of xenon transit to show that the peak local concentration of polarized xenon delivered to tissues by injection may exceed that delivered by respiration by severalfold.
Resumo:
Monoclonal antibodies raised against axonemal proteins of sea urchin spermatozoa have been used to study regulatory mechanisms involved in flagellar motility. Here, we report that one of these antibodies, monoclonal antibody D-316, has an unusual perturbating effect on the motility of sea urchin sperm models; it does not affect the beat frequency, the amplitude of beating or the percentage of motile sperm models, but instead promotes a marked transformation of the flagellar beating pattern which changes from a two-dimensional to a three-dimensional type of movement. On immunoblots of axonemal proteins separated by SDS-PAGE, D-316 recognized a single polypeptide of 90 kDa. This protein was purified following its extraction by exposure of axonemes to a brief heat treatment at 40°C. The protein copurified and coimmunoprecipitated with proteins of 43 and 34 kDa, suggesting that it exists as a complex in its native form. Using D-316 as a probe, a full-length cDNA clone encoding the 90-kDa protein was obtained from a sea urchin cDNA library. The sequence predicts a highly acidic (pI = 4.0) protein of 552 amino acids with a mass of 62,720 Da (p63). Comparison with protein sequences in databases indicated that the protein is related to radial spoke proteins 4 and 6 (RSP4 and RSP6) of Chlamydomonas reinhardtii, which share 37% and 25% similarity, respectively, with p63. However, the sea urchin protein possesses structural features distinct from RSP4 and RSP6, such as the presence of three major acidic stretches which contains 25, 17, and 12 aspartate and glutamate residues of 34-, 22-, and 14-amino acid long stretches, respectively, that are predicted to form α-helical coiled-coil secondary structures. These results suggest a major role for p63 in the maintenance of a planar form of sperm flagellar beating and provide new tools to study the function of radial spoke heads in more evolved species.
Resumo:
We have examined the behavior of demembranated sperm heads when injected into the germinal vesicle (GV) of amphibian oocytes. Xenopus sperm heads injected into Xenopus GVs swelled immediately and within hours began to stain with an antibody against RNA polymerase II (Pol II). Over time each sperm head became a loose mass of chromosome-like threads, which by 24–48 h resolved into individually recognizable lampbrush chromosomes (LBCs). Although LBCs derived from sperm are unreplicated single chromatids, their morphology and immunofluorescent staining properties were strikingly similar to those of the endogenous lampbrush bivalents. They displayed typical transcriptionally active loops extending from an axis of condensed chromomeres, as well as locus-specific “landmarks.” Experiments with [3H]GTP and actinomycin D demonstrated that transcription was not necessary for the initial swelling of the sperm heads and acquisition of Pol II but was required for maintenance of the lampbrush loops. Splicing was not required at any stage during formation of sperm LBCs. When Xenopus sperm heads were injected into GVs of the newt Notophthalmus, the resulting sperm LBCs displayed very long loops with pronounced Pol II axes, like those of the endogenous newt LBCs; as expected, they stained with antibodies against newt-specific proteins. Other heterologous injections, including sperm heads of the frog Rana pipiens and the zebrafish Danio rerio in Xenopus GVs, confirm that LBCs can be derived from taxonomically distant organisms. The GV system should help identify both cis- and trans-acting factors needed to convert condensed chromatin into transcriptionally active LBCs. It may also be useful in producing cytologically analyzable chromosomes from organisms whose oocytes do not go through a typical lampbrush phase or cannot be manipulated by current techniques.
Resumo:
Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.
Resumo:
Human sperm centrosome reconstitution and the parental contributions to the zygotic centrosome are examined in mammalian zygotes and after exposure of spermatozoa to Xenopus laevis cell-free extracts. The presence and inheritance of the conserved centrosomal constituents γ-tubulin, centrin, and MPM-2 (which detects phosphorylated epitopes) are traced, as is the sperm microtubule-nucleating capability on reconstituted centrosomes. γ-Tubulin is biparentally inherited in humans (maternal >> than paternal): Western blots detect the presence of paternal γ-tubulin. Recruitment of maternal γ-tubulin to the sperm centrosome occurs after sperm incorporation in vivo or exposure to cell-free extract, especially after sperm “priming” induced by disulfide bond reduction. Centrin is found in the proximal sperm centrosomal region, demonstrates expected calcium sensitivity, but appears absent from the zygotic centrosome after sperm incorporation or exposure to extracts. Sperm centrosome phosphorylation is detected after exposure of primed sperm to egg extracts as well as during the early stages of sperm incorporation after fertilization. Finally, centrosome reconstitution in cell-free extracts permits sperm aster microtubule assembly in vitro. Collectively, these results support a model of a blended zygotic centrosome composed of maternal constituents attracted to an introduced paternal template after insemination.
Resumo:
We show that an electric treatment in the form of high-frequency, low-voltage electric pulses can increase more than 100-fold the production and secretion of a recombinant protein from mouse skeletal muscle. Therapeutical erythopoietin (EPO) levels were achieved in mice with a single injection of as little as 1 μg of plasmid DNA, and the increase in hematocrit after EPO production was stable and long-lasting. Pharmacological regulation through a tetracycline-inducible promoter allowed regulation of serum EPO and hematocrit levels. Tissue damage after stimulation was transient. The method described thus provides a potentially safe and low-cost treatment for serum protein deficiencies.
Resumo:
Adaptations in one sex may impair fitness in the opposite sex. Experiments with Drosophila melanogaster have shown that seminal fluid from the male accessory gland triggers a series of postmating responses in the female, including increased egg laying rate and lower remating propensity, but that accessory gland proteins also increase female death rate. Here, we tested the relationships among the longevity of females mated to males from 51 chromosome-extracted D. melanogaster lines, male-mating ability, and sperm-competitive ability. We found significant differences in longevity of females mated to males of different genotypes, and all mated females showed a higher death rate than control virgin females shortly after mating. Both the age-independent mortality parameter (the intercept of the female's survival function) and the slope of the mortality rate curve were significantly correlated with the proportion of progeny sired by the first male to mate relative to tester males (sperm-defense ability, P1). No significant correlation was found between the proportion of progeny sired by the second-mating male relative to tester males (sperm-offense ability, P2) and any mortality parameter. Our results support the hypothesis of a tradeoff between defensive sperm-competitive ability of males and life-history parameters of mated females.
Resumo:
To initiate fertilization, mouse sperm bind to Ser- (O-) linked oligosaccharides located at the sperm combining site of zona pellucida glycoprotein mZP3. Apparently, the oligosaccharides are present on one or more of five Ser residues clustered in the carboxyl-terminal region of the mZP3 polypeptide. Here, each of the Ser residues, as well as an intervening Asn residue, was converted to a small, nonhydroxy amino acid by site-directed mutagenesis. Mouse embryonal carcinoma (EC) cells were then stably transfected with the wild-type and mutated mZP3 genes. In each case, transfected cells synthesized and secreted recombinant EC-mZP3 into the culture medium. The glycoproteins were partially purified and assayed for their ability to inhibit binding of sperm to ovulated eggs in vitro. As compared with wild-type EC-mZP3, mutations of Ser-329, Ser-331, or Ser-333 had no effect on sperm receptor activity. Mutation of Asn-330, a potential N-linked glycosylation site, also had no effect on sperm receptor activity. On the other hand, mutation of either Ser-332 or Ser-334, or mutation of Ser-332, Ser-333, and Ser-334, resulted in complete inactivation of EC-mZP3 as a sperm receptor. These results suggest that Ser-332 and Ser-334, residues conserved in mouse, hamster, and human ZP3, are essential for sperm receptor activity.
Resumo:
Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes.
Resumo:
The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity.
Resumo:
A recombinant adeno-associated virus (rAAV) vector capable of infecting cells and expressing rat glial cell line-derived neurotrophic factor (rGDNF), a putative central nervous system dopaminergic survival factor, under the control of a potent cytomegalovirus (CMV) immediate/early promoter (AAV-MD-rGDNF) was constructed. Two experiments were performed to evaluate the time course of expression of rAAV-mediated GDNF protein expression and to test the vector in an animal model of Parkinson’s disease. To evaluate the ability of rAAV-rGDNF to protect nigral dopaminergic neurons in the progressive Sauer and Oertel 6-hydroxydopamine (6-OHDA) lesion model, rats received perinigral injections of either rAAV-rGDNF virus or rAAV-lacZ control virus 3 weeks prior to a striatal 6-OHDA lesion and were sacrificed 4 weeks after 6-OHDA. Cell counts of back-labeled fluorogold-positive neurons in the substantia nigra revealed that rAAV-MD-rGDNF protected a significant number of cells when compared with cell counts of rAAV-CMV-lacZ-injected rats (94% vs. 51%, respectively). In close agreement, 85% of tyrosine hydroxylase-positive cells remained in the nigral rAAV-MD-rGDNF group vs. only 49% in the lacZ group. A separate group of rats were given identical perinigral virus injections and were sacrificed at 3 and 10 weeks after surgery. Nigral GDNF protein expression remained relatively stable over the 10 weeks investigated. These data indicate that the use of rAAV, a noncytopathic viral vector, can promote delivery of functional levels of GDNF in a degenerative model of Parkinson’s disease.