909 resultados para International Brotherhood of Electrical Workers
Resumo:
This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a novel method for power quality signal decomposition is proposed based on Independent Component Analysis (ICA). This method aims to decompose the power system signal (voltage or current) into components that can provide more specific information about the different disturbances which are occurring simultaneously during a multiple disturbance situation. The ICA is originally a multichannel technique. However, the method proposes its use to blindly separate out disturbances existing in a single measured signal (single channel). Therefore, a preprocessing step for the ICA is proposed using a filter bank. The proposed method was applied to synthetic data, simulated data, as well as actual power system signals, showing a very good performance. A comparison with the decomposition provided by the Discrete Wavelet Transform shows that the proposed method presented better decoupling for the analyzed data. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The present paper deals with the calculation of grounding resistance of an electrode composed of thin wires, that we consider here as perfect electric conductors (PEC) e.g. with null internal resistance, when buried in a soil of uniform resistivity. The potential profile at the ground surface is also calculated when the electrode is energized with low frequency current. The classic treatment by using leakage currents, called Charge Simulated Method (CSM), is compared with that using a set of steady currents along the axis of the wires, here called the Longitudinal Currents Method (LCM), to solve the Maxwell equations. The method of moments is applied to obtain a numerical approximation of the solution by using rectangular basis functions. Both methods are applied to two types of electrodes and the results are also compared with those obtained using a thirth approach, the Average Potential Method (APM), later described in the text. From the analysis performed, we can estimate a value of the error in the determination of grounding resistance as a function of the number of segments in which the electrodes are divided.
Resumo:
Frequency Response Analysis is a well-known technique for the diagnosis of power transformers. Currently, this technique is under research for its application in rotary electrical machines. This paper presents significant results on the application of Frequency Response Analysis to fault detection in field winding of synchronous machines with static excitation. First, the influence of the rotor position on the frequency response is evaluated. Secondly, some relevant test results are shown regarding ground fault and inter-turn fault detection in field windings at standstill condition. The influence of the fault resistance value is also taken into account. This paper also studies the applicability of Frequency Response Analysis in fault detection in field windings while rotating. This represents an important feature because some defects only appear with the machine rated speed. Several laboratory test results show the applicability of this fault detection technique in field windings at full speed with no excitation current.
Resumo:
Title varies slightly.