955 resultados para Intercellular signaling peptides and proteins
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.
Resumo:
Viral fusion proteins mediate the merger of host and viral membranes during cell entry for all enveloped viruses. Baculovirus glycoprotein gp64 (gp64) is unusual in promoting entry into both insect and mammalian cells and is distinct from established class I and class II fusion proteins. We report the crystal structure of its postfusion form, which explains a number of gp64's biological properties including its cellular promiscuity, identifies the fusion peptides and shows it to be the third representative of a new class (III) of fusion proteins with unexpected structural homology with vesicular stomatitis virus G and herpes simplex virus type 1 gB proteins. We show that domains of class III proteins have counterparts in both class I and II proteins, suggesting that all these viral fusion machines are structurally more related than previously thought.
Resumo:
We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole- genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T- box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains ( such as Paired, POU, and T- box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.
Resumo:
The pro-opiomelanocortin (POMC)-derived peptides, pro-gamma-MSH (16K fragment), and Lys-gamma(3)-MSH, have been shown to potentiate the steroidogenic action of corticotrophin (ACTH) on the adrenal cortex. Using a continuously perfused adrenal cell column system, we have tested the hypothesis that gamma-MSH peptides exert their effect through the Melanocortin 3 Receptor (MC3-R), since this is the only known receptor to have high affinity for gamma-MSH peptides and has been suggested to be expressed in the rat adrenal. To investigate this hypothesis we tested whether the MC3-R agonist MTII and antagonist SHU9119 could mimic or block the actions of pro-gamma-MSH. We found that MTII could not mimic, and SHU9119 could not block pro-gamma-MSH mediated potentiation of ACTH-induced steroidogenesis. These results suggest that the MC3-R is not involved in mediating the potentiation effect, adding further evidence to the argument that another melanocortin receptor exists.
Resumo:
Current research into indirect phytopathogen–herbivore interactions (i.e., interactions mediated by the host plant) is carried out in two largely independent directions: ecological/mechanistic and molecular. We investigate the origin of these approaches and their strengths and weaknesses. Ecological studies have determined the effect of herbivores and phytopathogens on their host plants and are often correlative: the need for long-term manipulative experiments is pressing. Molecular/cellular studies have concentrated on the role of signaling pathways for systemic induced resistance, mainly involving salicylic acid and jasmonic acid, and more recently the cross-talk between these pathways. This cross-talk demonstrates how interactions between signaling mechanisms and phytohormones could mediate plant–herbivore–pathogen interactions. A bridge between these approaches may be provided by field studies using chemical induction of defense, or investigating whole-organism mechanisms of interactions among the three species. To determine the role of phytohormones in induced resistance in the field, researchers must combine ecological and molecular methods. We discuss how these methods can be integrated and present the concept of “kaleidoscopic defense.” Our recent molecular-level investigations of interactions between the herbivore Gastrophysa viridula and the rust fungus Uromyces rumicis on Rumex obtusifolius, which were well studied at the mechanistic and ecological levels, illustrate the difficulty in combining these different approaches. We suggest that the choice of the right study system (possibly wild relatives of model species) is important, and that molecular studies must consider the environmental conditions under which experiments are performed. The generalization of molecular predictions to ecologically realistic settings will be facilitated by “middle-ground studies” concentrating on the outcomes of the interactions.
Resumo:
Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.
Resumo:
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
Phenotypic and phylogenetic studies were performed on four isolates of an unidentified gram-negative, microaerotolerant, non-spore-forming, rod-shaped bacterium isolated from the feces of children. The unknown organism was bile resistant and produced acetic acid as the major end product of metabolism of peptides and carbohydrates. It possessed a low DNA G + C content of 31 mol %. Comparative 16S rRNA gene sequencing demonstrated that the four isolates were phylogenetically identical (100% 16S rRNA sequence similarity) and represent a hitherto unknown sub-line within the genus Cetobacterium. The novel bacterium displayed approximately 5% sequence divergence with Cetobacterium ceti, and can be readily distinguished from the latter by physiological and biochemical criteria. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown fecal bacterium be classified in the genus Cetobacterium, as Cetobacterium somerae sp. nov. The proposed type strain of Cetobacterium somerae is WAL 14325(T) (ATCC BAA-474(T) = CCUG 46254T).
Resumo:
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.
Resumo:
With the rapid development of proteomics, a number of different methods appeared for the basic task of protein identification. We made a simple comparison between a common liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow using an ion trap mass spectrometer and a combined LC-MS and LC-MS/MS method using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and accurate peptide masses. To compare the two methods for protein identification, we grew and extracted proteins from E. coli using established protocols. Cystines were reduced and alkylated, and proteins digested by trypsin. The resulting peptide mixtures were separated by reversed-phase liquid chromatography using a 4 h gradient from 0 to 50% acetonitrile over a C18 reversed-phase column. The LC separation was coupled on-line to either a Bruker Esquire HCT ion trap or a Bruker 7 tesla APEX-Qe Qh-FTICR hybrid mass spectrometer. Data-dependent Qh-FTICR-MS/MS spectra were acquired using the quadrupole mass filter and collisionally induced dissociation into the external hexapole trap. Proteins were in both schemes identified by Mascot MS/MS ion searches and the peptides identified from these proteins in the FTICR MS/MS data were used for automatic internal calibration of the FTICR-MS data, together with ambient polydimethylcyclosiloxane ions.