976 resultados para Interannual Variability
Resumo:
Offshore winter-spawned fishes dominate the nekton of south-eastern United States estuaries. Their juveniles reside for several months in shallow, soft bottom estuarine creeks and bays called primary nursery areas. Despite similarity in many nursery characteristics, there is, between and within species, variability in the occupation of these habitats. Whether all occupied habitats are equally valuable to individuals of the same species or whether most recruiting juveniles end up in the best habitats is not known. If nursery quality varies, then factors controlling variation in pre-settlement fish distribution are important to year-class success. If nursery areas have similar values, interannual variation in distribution across nursery creeks should have less effect on population sizes or production. I used early nursery period age-specific growth and mortality rates of spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus)—two dominant estuarine fishes—to assess relative habitat quality across a wide variety of nursery conditions, assuming that fish growth and mortality rates were direct reflections of overall physical and biological conditions in the nurseries. I tested the hypothesis that habitat quality varies for these fishes by comparing growth and mortality rates and distribution patterns across a wide range of typical nursery habitats at extreme ends of two systems. Juvenile spot and Atlantic croaker were collected from 10 creeks in the Cape Fear River estuary and from 18 creeks in the Pamlico Sound system, North Carolina, during the 1987 recruitment season (mid-March–mid-June). Sampled creeks were similar in size, depth, and substrates but varied in salinities, tidal regimes, and distances from inlets. Spot was widely distributed among all the estuarine creeks, but was least abundant in the creeks in middle reaches of both systems. Atlantic croaker occurred in the greatest abundance in oligohaline creeks of both systems. Instantaneous growth rates derived from daily otolith ages were generally similar for all creeks and for both species, except that spot exhibited a short-term growth depression in the upriver Pamlico system creeks—perhaps the result of the long migration distance of this species to this area. Spot and Atlantic croaker from upriver oligohaline creeks exhibited lower mortality rates than fish from downstream polyhaline creeks. These results indicated that even though growth was similar at the ends of the estuaries, the upstream habitats provided conditions that may optimize fitness through improved survival.
Resumo:
Crater Lake has fluctuated in elevation by 5 meters during the 20th Century. Reasons for these fluctuations were investigated as part of a long-term study of the Crater Lake ecosystem. Lake level changes were found to be closely related to precipitation variations. The lake can be thought of as acting as both a giant precipitation gage and as a large evaporation "pan". Winter snowfall variations are related to variations in the Southern Oscillation Index. Crater Lake offers a unique combination of simple geometry and hydrology, and a long record of supporting data, available nowhere else in the world for a caldera lake.
Resumo:
Over the last 50 years, much of the variability in ocean climate and herring recruitment has occurred at two dominant periods centered around 5 and 16 years. Herring growth has also exhibited a dominant 5- and 18-year periodicity. A recent analysis of a number of relevant time series suggests that interannual variations in oceanic conditions off the west coast of Vancouver Island affect survival of herring and their principal predator, Pacific hake, which also exhibits a marked 16-year oscillation in abundance. Thus the dynamics of the herring stock are modulated by a combination of climate and predator forcing. Much of the interannual variation in herring growth is centered around the 5-year (moderate ENSO period) and 16-year (strong ENSO period) ocean climate oscillations and the 16-year recruitment oscillation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A high resolution, AMS carbon-14-dated sediment record from the Sulu Sea clearly indicates the Younger Dryas climatic event affected the western equatorial Pacific. Presence of the Younger Dryas in the tropical western Pacific indicates this climatic event is not restricted to the North Atlantic nor to high latitudes, but is global in extent.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pollen analysis and 5 radiocarbon dates for a 687-cm core provide a detailed chronology of environmental change for San Joaquin Marsh at the head of Newport Bay, Orange County, California. Sediment deposition kept pace with sea level rise during the mid-Holocene, but after 4500 years BP, sea water regularly reached the coring site, and salt marsh was the local vegetation. Brief periods of dominance by fresh-water vegetation 3800, 2800, 2300 and after 560 years BP correlate global cooling events and (except the 3800-year BP event) with carbon-14 production anomalies. The coincidence of climate change and carbon-14 anomalies support a causal connection with solar variability, but regardless of the causal mechanism(s) the delta-carbon-14 curves provide a chronology for global, high-frequency climatic change comparable to that of Milankovitch cyclicity for longer time scales.
Resumo:
Snowpack is an important source of water supply in the western United States. This study examines the seasonal variability of an extensive history of snow observations over the western United States and Canada. It links variations in snowpack to variations in atmospheric circulation, surface temperature, and precipitation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The characterization of inter-decadal climate variability in the Southern Hemisphere is severely constrained by the shortness of the instrumental climate records. To help relieve this constraint, we have developed and analyzed a reconstruction of warm-season (November-April) temperatures from Tasmanian tree rings that now extends back to 800 BC. A detailed analysis of this reconstruction in the time and frequency domains indicates that much of the inter-decadal variability is principally confined to four frequency bands with mean periods of 31, 57, 77, and 200 years. ... In so doing, we show how a future greenhouse warming signal over Tasmania could be masked by these natural oscillations unless they are taken into account.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale. ... Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components.
Resumo:
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods that can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.