990 resultados para Integrated Preservation Politics
Resumo:
Utilization of wastewater in fish culture is based on nutrient recycling, which enhances primary productivity, planktonic biomass, macrophytes and benthic organisms which determine fish production. Production of fishes could be enhanced to 10 ton/ha through wastewater recycling by judicial stock manipulation and management. The fallow lands around a sewage fish farm could be utilized for agri-horticultural production by recycling both sludge and sewage water, resulting in a total agro production of about 110 ton/ha through rotational vegetable cropping. The potential for additional production of vegetables not only enhances revenue but also creates employment.
Resumo:
The results of experiments conducted on a pond dyke (655m²) in the Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara, during 1992-93 for maximising production through optimum utilisation of resources are communicated. Round the year intensive cultivation of okra (Abelmoschus esculentus), amaranth (Amaranthus gangeticus and A. viridus), water-bind weed (Ipomea aquatica), Indian spinach (Basella rubra), radish (Raphanus sativum), amaranth (Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis), cabbage (Brassica oleracia var. capitota) and papaya (Carica papaya) was undertaken using the treated sewage water from fish ponds for irrigation. The pond dyke yielded 5,626.5 kg vegetable which worked out to 85.9 tons per ha per year. Multiple cropping with these vegetables excluding papaya on a 460 m² dyke recorded a production of 4,926.5 kg at the rate of 107.1t per ha/yr. An improved yearly net return of about 35% over investment could be achieved through the selection of highly productive and pest resistant vegetable crops of longer duration for integration into the system. Introduction of this type of integrated farming would enhance the overall productivity and returns from farming.
Resumo:
Except for the preliminary studies at Torry Research Station in Scotland, no results have been reported on the succession of the bacterial flora during the storage of fish in chilled water. The present work was undertaken to elucidate the dynamics of bacterial population changes in chilled fresh water under comparable conditions of storage in melting ice (+1° to +3°C.) which has been earlier studied by de Silva in 1960.
Resumo:
Wavelength conversion in the 1550 nm regime was achieved in an integrated semiconductor optical amplifier (SOA)/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. A 12 dB output extinction ratio was obtained for an average coupled input power of 75 μW with the laser section driven at 65 mA and the amplifier section at 180 mA. The response time achieved was as low as 13 ps with the laser biased at 175 mA even with low extinction ratios. The laser exhibits a similar recovery time allowing potentially very high bit-rate operation.
Resumo:
Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.
Resumo:
Wavelength conversion in the 1.55-μm regime was achieved for the first time in an integrated SOA/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. In terms of speed, response times as low as 13ps were observed, though at the expense of reduced extinction ratio. Generally, these results indicate that operation in the 10s of GB/s should be possible.
Resumo:
A technique is demonstrated that allows for the wavelength conversion of data with both simultaneous monitoring and replacing of a wavelength identifying pilot tone. The technique should be upgradable to data rates of 10Gb/s and higher.
Resumo:
A study of the relative performance of an integrated semiconductor optical amplifier (SOA)/distributed feedback laser wavelength converter that can operate with negative penalties at 10 Gb/s rates is conducted. It is found that reduction of more than 25 times in required input powers are achieved when compared with laser or SOA converters.
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.
Resumo:
A novel optical switching matrix measuring 1×2 mm2 in size is fabricated. The switching matrix is composed of waveguides, four 1×4 multimode interference (MMI) splitters, 32 total internal refraction mirrors and four 4×1 MMI combiners with the extremely compact size of 1×2 mm2. This integrated device are assessed and loss contribution measured from test structure is presented.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488 Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.
Resumo:
Multi-wavelength picosecond pulses are demonstrated using a single monolithically integrated Multi-wavelength Grating Cavity (MGC) laser. This is achieved on two WDM wavelength channels at a repetition rate of 7.63 GHz.
Resumo:
Quantum well intermixing is a key technique for photonic integration. The intermixing of InP/InGaAs/InGaAsP material involving the deposition of a layer of sputtered SiO2 on the semiconductor surface, followed by thermal annealing has allowed good control of the intermixing process and has been used to fabricate extended cavity lasers. This will be used for optimization of the performance of optical switches consisting of passive components, modulators and amplifiers.