921 resultados para Indians of South America.
Resumo:
Land cover maps at different resolutions and mapping extents contribute to modeling and support decision making processes. Because land cover affects and is affected by climate change, it is listed among the 13 terrestrial essential climate variables. This paper describes the generation of a land cover map for Latin America and the Caribbean (LAC) for the year 2008. It was developed in the framework of the project Latin American Network for Monitoring and Studying of Natural Resources (SERENA), which has been developed within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLaTIF). The SERENA land cover map for LAC integrates: 1) the local expertise of SERENA network members to generate the training and validation data, 2) a methodology for land cover mapping based on decision trees using MODIS time series, and 3) class membership estimates to account for pixel heterogeneity issues. The discrete SERENA land cover product, derived from class memberships, yields an overall accuracy of 84% and includes an additional layer representing the estimated per-pixel confidence. The study demonstrates in detail the use of class memberships to better estimate the area of scarce classes with a scattered spatial distribution. The land cover map is already available as a printed wall map and will be released in digital format in the near future. The SERENA land cover map was produced with a legend and classification strategy similar to that used by the North American Land Change Monitoring System (NALCMS) to generate a land cover map of the North American continent, that will allow to combine both maps to generate consistent data across America facilitating continental monitoring and modeling
Resumo:
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load
Resumo:
Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.
Resumo:
Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.
Resumo:
Cutoff lows (COLs) pressure systems climatology for the Southern Hemisphere (SH), between 10 degrees S and 50 degrees S, using the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and the ERA-40 European Centre for Medium Range Weather Forecast (ECMWF) reanalyses are analyzed for the period 1979-1999. COLs were identified at three pressure levels (200, 300, and 500 hPa) using an objective method that considers the main physical characteristics of the conceptual model of COLs. Independently of the pressure level analyzed, the climatology from the ERA-40 reanalysis has more COLs systems than the NCEP-NCAR. However, both reanalyses present a large frequency of COLs at 300 hPa, followed by 500 and 200 hPa. The seasonality of COLs differs at each pressure level, but it is similar between the reanalyses. COLs are more frequent during summer, autumn, and winter at 200, 300, and 500 hPa, respectively. At these levels, they tend to occur around the continents, preferentially from southeastern Australia to New Zealand, the south of South America, and the south of Africa. To study the COLs at 200 and 300 hPa from a regional perspective, the SH was divided in three regions: Australia-New Zealand (60 E-130 W), South America (130 degrees W-20 degrees W), and southern Africa (20 degrees W-60 degrees E). The common COLs features in these sectors for both reanalyses are a short lifetime (similar to 80.0% and similar to 70.0% of COLs at 200 and 300 hPa, respectively, persisting for up to 3 days), mobility (similar to 70.0% and similar to 50% of COLs at 200 and 300 hPa, respectively, traveling distances of up to 1200 km), and an eastward propagation.
Resumo:
The Collared Crescentchest (Melanopareia torquata) is endemic to the Cerrado Biome, and distributed mainly in Brazil, but extending to Bolivia and Paraguay. Although considered of least concern globally, it is threatened in the state of Sao Paulo in south-eastern Brazil. In this study we examined the morphology and some aspects of behaviour of the Collared Crescentchest. Birds were captured with mist-nets using playback in September-December 2006 and October-November 2007. For each captured bird, we took a range of morphological measurements, looked for brood-patches and moult, and took a blood sample for genetic determination of sex. Of the 35 individuals captured, only five were female, probably as a result of behavioural differences between sexes, with males apparently responding more readily to the playback. Furthermore, birds with white dorsal patches exhibited more aggression or risk taking behaviour than birds without patches. However, there was no sexual dimorphism in any of the morphological or colour traits measured ( although the female sample was small). Brood-patches were present mainly in October and November, but we did not detect any cloacal protuberance. Among the four species that comprise the family Melanopareiidae, this is the first record of brood-patches in males.
Resumo:
Here we describe the stomach contents of nine small mammal species (seven rodents and two didelphid marsupials) co-occurring in an old-growth Atlantic forest area. For four terrestrial rodents, we also compared the importance of arthropods in the diet and the selection of arthropod groups by comparing consumption with availability. Small mammals and arthropods were sampled in a 36-ha grid containing 25 sampling stations spaced every 150 m, and 47 stomach contents were analysed. While plant matter was the predominant item in the stomach contents of two rodents (Oligoryzomys nigripes and Rhipidomys mastacalis), four species presented arthropods as the main food item (the rodents Brucepattersonius soricinus and Oxymycterus dasytrichus, and the marsupials Monodelphis n. sp. and Marmosops incanus) and three consumed more plant matter than arthropods, but had significant amounts of both items (the rodents Delomys sublineatus, Euryoryzomys russatus and Thaptomys nigrita). Our results suggest that differences in diet, coupled with differences in habit and microhabitat preferences, are important factors allowing resource partition among species of the diverse group of co-occurring terrestrial small mammals in Atlantic forest areas. Moreover, arthropods were not preyed opportunistically by any of the four terrestrial rodents, since consumption was not proportional to availability. Rather, selection or rejection of arthropod groups seems to be determined by aspects other than availability, such as nutritional value, easiness of capture and handling or palatability.
Resumo:
Aim The aim of this study is to investigate areas of endemism within the distribution of Oswaldella species in the Southern Ocean, thereby testing previous hypotheses and proposing alternative scenarios for Antarctic evolution. Location Southern Ocean, Antarctic and sub-Antarctic waters of southern South America. Methods We prepared a database for the 31 currently known species of the Antarctic genus Oswaldella, which includes geographical locations gathered from published taxonomic studies as well as materials from museums and expeditions. A parsimony analysis of endemicity (PAE) was used to test hypotheses of distribution patterns. Results Four areas of endemism are hypothesized: southern South America, two high Antarctic areas (eastern and western) and a larger area, mainly in western Antarctica at lower latitudes and including insular areas (but not the Balleny Islands). Main conclusions The results support, in part, previous hypotheses for the Southern Ocean region, while providing more detailed resolution. The areas of endemism may reflect both historical and ecological processes that influenced the Antarctic biota. The Magellanic area reflects the well-known affinities of the Antarctic biota with that of South America and may be a consequence of dispersal through deeper (and colder) waters, followed by speciation. The second area, the largest one, encompasses most of the insular faunas and may also be associated with deeper waters formed since 43 Ma. The third area may be explained by the development of seaways in the circum-Antarctic region beginning 50 Ma. Finally, the fourth zone, with a very poor fauna, coincides with the opening of the Tasman Strait and the formation of the Australo-Antarctic Gulf, associated with a minor wind-driven current.