941 resultados para Immune cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaccination with Echinococcus multilocularis 14-3-3 protein can protect mice against primary E. multilocularis infection. The present study investigated the efficacy and efficiency of the adjuvant muramyl dipeptide Gerbu, alone or together with recombinant 14-3-3 protein, to modulate the course of secondary E. multilocularis infection in C56BL/6 mice. The application of Gerbu alone already resulted in a parasite weight reduction when compared with infected control mice, while rec14-3-3 did not add to this effect. Immunological parameters were concurrently assessed with a mixed cell reaction including bone marrow-derived dendritic cells (BMDCs) together with lymph node cells from mice with or without immunisation and/or infection. While mice having received Gerbu adjuvant were found to highly proliferate in response to co-cultivation with 14-3-3-stimulated bone marrow dendritic cells, a sensitisation of BMDCs with vesicle fluid (VF) antigen lead to a striking decrease of the lymphoproliferative response in comparison to that of control mice, raising the hypothesis that immunosuppressive components may be part of this VF-antigen. Anti-14-3-3 antibody production was only found in those mice that had been previously 14-3-3-immunised, whereas all other only-infected mice failed to produce such antibodies. Conclusively, Gerbu adjuvant appears to directly generate a non-specific immune response that contributes to the control of the metacestode growth, putatively in association with a BMDC activity suppressed by components of the VF-antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV infection is associated with immune dysfunction, perturbation of immune-cell subsets and opportunistic infections. CD161++ CD8+ T cells are a tissue-infiltrating population that produce IL17A, IL22, IFN, and TNFα, cytokines important in mucosal immunity. In adults they dominantly express the semi-invariant TCR Vα7.2, the canonical feature of mucosal associated invariant T (MAIT) cells and have been recently implicated in host defense against pathogens. We analyzed the frequency and function of CD161++ /MAIT cells in peripheral blood and tissue from patients with early stage or chronic-stage HIV infection. We show that the CD161++ /MAIT cell population is significantly decreased in early HIV infection and fails to recover despite otherwise successful treatment. We provide evidence that CD161++ /MAIT cells are not preferentially infected but may be depleted through diverse mechanisms including accumulation in tissues and activation-induced cell death. This loss may impact mucosal defense and could be important in susceptibility to specific opportunistic infections in HIV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-17 secreting CD4 (Th17) and CD8 (Tc17) T cells have been implicated in immune-mediated liver diseases, but the molecular basis for their recruitment and positioning within the liver is unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of bovine viral diarrhea virus (BVD virus) with its host has several unique features, most notably the capacity to infect its host either transiently or persistently. The transient infection stimulates an antiviral immune reaction similar to that seen in other transient viral infections. In contrast, being associated with immunotolerance specific for the infecting BVD viral strain, the persistent infection differs fundamentally from other persistent infections like those caused by lentiviruses. Whereas the latter are characterized by complex viral evasion of the host's adaptive immune response by mechanisms such as antigenic drift and interference with presentation of T cell epitopes, BVD virus avoids the immune response altogether by inducing both humoral and cellular immune tolerance. This is made possible by invasion of the fetus at an early stage of development. In addition to adaptive immunity, BVD virus also manipulates key elements of the host's innate immune response. The non-cytopathic biotype of BVD virus, which is capable of persistently infecting its host, fails to induce type I interferon. In addition, persistently infected cells are resistant to the induction of apoptosis by double-stranded RNA and do not produce interferon when treated with this pathogen-associated molecular pattern (PAMP) that signals viral infection. Moreover, when treated with interferon, cells persistently infected with non-cytopathic BVD virus do not clear the virus. Surprisingly, however, despite this lack of effect on persistent infection, interferon readily induces an antiviral state in these cells, as shown by the protection against infection by unrelated viruses. Overall, BVD virus manipulates the host's interferon defense in a manner that optimises its chances of maintaining the persistent infection as well as decreasing the risks that heterologous viral infections may carry for the host. Thus, since not all potential host cells are infected in animals persistently infected with BVD virus, heterologous viruses replicating in cells uninfected with BVD virus will still trigger production of interferon. Interferon produced by such cells will curtail the replication of heterologous viruses only, be that in cells already infected with BVD virus, or in cells in which the heterologous virus may replicate alone. From an evolutionary viewpoint, this strategy clearly enhances the chances of transmission of BVD virus to new hosts, as it attenuates the negative effects that a global immunosuppression would have on the survival of persistently infected animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Flea allergy dermatitis (FAD) is a common skin disease in dogs and can be induced experimentally. It often coexists with other allergic conditions. So far no studies have investigated the quantitative production of cytokine mRNA in skin biopsies and peripheral blood mononuclear cells (PBMC) in flea allergic dogs. OBJECTIVE: The aim of our study was to improve the understanding of the immunopathogenesis of allergic dermatitis as a response to fleabites. MATERIAL AND METHODS: Allergic and non-allergic dogs were exposed to fleas. Before and after 4 days of flea exposure mRNA was isolated from biopsies and PBMC. Production of chymase, tryptase, IL-4, IL-5, IL-13, TNF-alpha and IFN-gamma mRNA was measured by real-time RT-PCR. The inflammatory infiltrate in the skin was scored semi-quantitatively. The number of eosinophils, mast cells (MC) and IgE+ cells/mm2 was evaluated to complete the picture. RESULTS: FAD was associated with a higher number of MC before flea exposure and with a significant increase of eosinophils after flea exposure as compared to non-allergic dogs. The number of IgE+ cells was higher in allergic dogs before and after flea exposure. In allergic dogs mRNA for most cytokines and proteases tested was higher before flea exposure than after flea exposure. After exposure to fleas an increased mRNA production was only observed in non-allergic dogs. In vitro stimulation with flea antigen resulted in a decreased expression of most cytokines in allergic dogs before flea exposure. In contrast, in PBMC, only increased levels of IL-4 and IL-5 mRNA were observed in allergic dogs before flea exposure. However, after flea exposure and additional stimulation with flea antigen the production of mRNA for all cytokines tested was significantly increased in allergic dogs. CONCLUSION: We demonstrated that the response in biopsies and PBMC is different and that FAD is associated with a TH2 response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced interstitial nephritis can be caused by a plethora of drugs and is characterized by a sudden impairment of renal function, mild proteinuria, and sterile pyuria. For investigation of the possible pathomechanism of this disease, drug-specific T cells were analyzed, their function was characterized, and these in vitro findings were correlated to histopathologic changes that were observed in kidney biopsy specimens. Peripheral blood mononuclear cells from three patients showed a proliferative response to only one of the administered drugs, namely flucloxacillin, penicillin G, and disulfiram, respectively. The in vitro analysis of the flucloxacillin-reactive cells showed an oligoclonal immune response with an outgrowth of T cells bearing the T cell receptor Vbeta9 and Vbeta21.3. Moreover, flucloxacillin-specific T cell clones could be generated from peripheral blood, they expressed CD4 and the alphabeta-T cell receptor, and showed a heterogeneous cytokine secretion pattern with no clear commitment to either a Th1- or Th2-type response. The immunohistochemistry of kidney biopsies of these patients revealed cell infiltrations that consisted mostly of T cells (CD4+ and/or CD8+). An augmented presence of IL-5, eosinophils, neutrophils, CD68+ cells, and IL-12 was observed. In agreement with negative cytotoxicity assays, no cytotoxicity-related molecules such as Fas and perforin were detected by immunohistochemistry. The data indicate that drug-specific T cells are activated locally and orchestrate a local inflammation via secretion of various cytokines, the type of which depends on the cytokine pattern secreted and which probably is responsible for the renal damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain insights into the molecular mechanisms underlying early host responses to HIV in the CD4(+) T cell target population, we examined gene expression in CD4(+) T cells isolated 24 h after ex vivo HIV infection of lymphocyte aggregate cultures derived from human tonsils. Gene profiling showed a distinct up-regulation of genes related to immune response and response to virus, notably of IFN-stimulated genes (ISGs), irrespective of the coreceptor tropism of the virus. This mostly IFN-alpha-dependent gene signature suggested the involvement of plasmacytoid dendritic cells, a principal component of the antiviral immune response. Indeed, depletion of plasmacytoid dendritic cells before HIV inoculation abrogated transcriptional up-regulation of several ISGs and resulted in increased levels of HIV replication. Treatment with a blocking anti-IFN-alphaR Ab yielded increased HIV replication; conversely, HIV replication was decreased in pDC-depleted cultures treated with IFN-alpha. Among up-regulated ISGs was also TRAIL, indicating a potential role of the IFN signature in apoptosis. However, a blocking anti-TRAIL Ab did not abrogate apoptosis of CD4(+) T cells in CXCR4-tropic HIV-infected cultures, suggesting the involvement of pathways other than TRAIL mediated. We conclude that acute HIV infection of lymphoid tissue results in up-regulation of ISGs in CD4(+) T cells, which induces an anti-HIV state but not apoptosis.