920 resultados para Immature Dendritic Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1-4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm(2) (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm(2) (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm(2) (2.0-mm diameter) to 10.2 mm(2) (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm(2) in the visual streak to 20 cells/mm(2) in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200-300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing similar to100 mm of dendrites and similar to1000 mm of axonal processes. The strong homologous tracer coupling revealed that similar to45% of the PA1 somata were located in the inner nuclear layer, similar to50% in the inner plexiform layer, and similar to5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of gamma-aminobutyric acid (GABA), like other axon-bearing amacrine cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic spines of pyramidal cells are the main postsynaptic targets of cortical excitatory synapses and as such, they are fundamental both in neuronal plasticity and for the integration of excitatory inputs to pyramidal neurons. There is significant variation in the number and density of dendritic spines among pyramidal cells located in different cortical areas and species, especially in primates. This variation is believed to contribute to functional differences reported among cortical areas. In this study, we analyzed the density of dendritic spines in the motor, somatosensory and visuo-temporal regions of the mouse cerebral cortex. Over 17,000 individual spines on the basal dendrites of layer III pyramidal neurons were drawn and their morphologies compared among these cortical regions. In contrast to previous observations in primates, there was no significant difference in the density of spines along the dendrites of neurons in the mouse. However, systematic differences in spine dimensions (spine head size and spine neck length) were detected, whereby the largest spines were found in the motor region, followed by those in the somatosensory region and those in visuo-temporal region. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We quantified the morphology of over 350 pyramidal neurons with identified ipsilateral corticocortical projections to the primary (V1) and middle temporal (MT) visual areas of the marmoset monkey, following intracellular injection of Lucifer Yellow into retrogradely labelled cells. Paralleling the results of studies in which randomly sampled pyramidal cells were injected, we found that the size of the basal dendritic tree of connectionally identified cells differed between cortical areas, as did the branching complexity and spine density. We found no systematic relationship between dendritic tree structure and axon target or length. Instead, the size of the basal dendritic tree increased roughly in relation to increasing distance from the occipital pole, irrespective of the length of the connection or the cortical layer in which the neurons were located. For example, cells in the second visual area had some of the smallest and least complex dendritic trees irrespective of whether they projected to V1 or MT, while those in the dorsolateral area (DL) were among the largest and most complex. We also observed that systematic differences in spine number were more marked among V1-projecting cells than MT-projecting cells. These data demonstrate that the previously documented systematic differences in pyramidal cell morphology between areas cannot simply be attributed to variable proportions of neurons projecting to different targets, in the various areas. Moreover, they suggest that mechanisms intrinsic to the area in which neurons are located are strong determinants of basal dendritic field structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cholinergic amacrine cells in the rabbit retina slowly accumulate glycine to very high levels when the tissue is incubated with excess sarcosine (methylglycine), even though these cells do not normally contain elevated levels of glycine and do not express high-affinity glycine transporters. Because the sarcosine also depletes the endogenous glycine in the glycine-containing amacrine cells and bipolar cells, the cholinergic amacrine cells can be selectively labeled by glycine immunocytochemistry under these conditions. Incubation experiments indicated that the effect of sarcosine on the cholinergic amacrine cells is indirect: sarcosine raises the extracellular concentration of glycine by blocking its re-uptake by the glycinergic amacrine cells, and the excess glycine is probably taken-up by an unidentified low-affinity transporter on the cholinergic amacrine cells. Neurobiotin injection of the On-Off direction-selective (DS) ganglion cells in sarcosine-incubated rabbit retina was combined with glycine immunocytochemistry to examine the dendritic relationships between the DS ganglion cells and the cholinergic amacrine cells. These double-labeled preparations showed that the dendrites of the DS ganglion cells closely follow the fasciculated dendrites of the cholinergic amacrine cells. Each ganglion cell dendrite located within the cholinergic strata is associated with a cholinergic fascicle and, conversely, there are few cholinergic fascicles that do not contain at least one dendrite from an On-Off DS cell. It is not known how the dendritic co-fasciculation develops, but the cholinergic dendritic plexus may provide the initial scaffold, because the dendrites of the On-Off DS cells commonly run along the outside of the cholinergic fascicles. J. Comp. Neurol. 421:1-13, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the fountain amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm(2) and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the newest members in Articial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the eld of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of real-time systems can be employed. The ndings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calcu- lus (DC), to specify a simplied single-cell model of the DCA. Based on the DC specications with further induction, we nd that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constricts its real-time capability. As a result, we conclude that the analysis process of the standard DCA should be replaced by a real-time analysis component, which can perform periodic analysis for the purpose of real-time detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To study the population of intrinsically photosensitive retinal ganglion cells (melanopsin-expressing RGCs, m+RGCs) in P23H-1 rats, a rat model of inherited photoreceptor degeneration. Methods: At postnatal (P) times P30, P365, and P540, retinas from P23H dystrophic rats (line 1, rapid degeneration; and line 3, slow degeneration) and Sprague Dawley (SD) rats (control) were dissected as whole-mounts and immunodetected for melanopsin and/or Brn3a. The dendritic arborization of m+RGCs and the numbers of Brn3a+RGCs and m+RGCs were quantified and their retinal distribution and coexpression analyzed. Results: In SD rats, aging did not affect the population of Brn3a+RGCs or m+RGCs or the percentage that showed coexpression (0.27%). Young P23H-1 rats had a significantly lower number of Brn3a+RGCs and showed a further decline with age. The population of m+RGCs in young P23H-1 rats was similar to that found in SD rats and decreased by 22.6% and 28.2% at P365 and P540, respectively, similarly to the decrease of the Brn3a+RGCs. At these ages the m+RGCs showed a decrease of their dendritic arborization parameters, which was similar in both the P23H-1 and P23H-3 lines. The percentage of coexpression of Brn3a was, however, already significantly higher at P30 (3.31%) and increased significantly with age (10.65% at P540). Conclusions: Inherited photoreceptor degeneration was followed by secondary loss of Brn3a+RGCs and m+RGCs. Surviving m+RGCs showed decreased dendritic arborization parameters and increased coexpression of Brn3a and melanopsin, phenotypic and molecular changes that may represent an effort to resist degeneration and/or preferential survival of m+RGCs capable of synthesizing Brn3a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Most studies on anabolic-androgenic steroids abuse have been done in adult rats, but few data are available to immature. Objective: This study was conducted to assay the effect of Nandrolone Decanoate (ND) on the testis and testosterone concentration in male immature rats compare with mature ones in short and long time. Materials and Methods: 40 mature rats were divided into 4 groups: group A (short term) and group B (long-term) received 10 mg/kg/day ND interaperitoneally for 35 and 70 days, respectively. Group C (control) without any treatment, and group D (vehicle) received dimethyl sulfoxide (DMSO) solution in two periods 35 and 70 days. 40 immature rats were divided into 4 groups same as mature ones. After surgery body weight, testis size, histomorphometry of testis, and serum testosterone level were evaluated. Results: Our results showed that ND decreased the number of Leydig cells in group B (39.9 ±. 919), group A (43.4 ±. 120), and long term (40.6 ±. 299) immature rats, which could result in a reduction of testosterone concentration significantly in all experimental groups except short term mature group. Number of sertoli cells, testis size, and diameter of seminiferous tubules decreased in the long-term immature group. Eventually, the number of sperm was decreased in mature and immature groups, but a severe depletion of sperm was occurred in both mature and immature in long time in comparison to the control group (p< 0.05). Conclusion: This time course study showed that supraphysiological dose of ND may negatively affect the number of Leydig cells, sperm cell, and testosterone concentration of immature rats in the same matter of mature rats. However, the number of sertoli cell, testis size, and seminferous diameter were decreased only in the long immature rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, mesenchymal stem cells (MSCs) from various tissues have been reported, but the yield and differentiation potential of different tissue-derived MSCs is still not clear. This study was undertaken in an attempt to investigate the multilineage stem cell potential of bone and cartilage explant cultures in comparison with bone marrow derived mesenchymal stem cells (BMSCs). The results showed that the surface antigen expression of tissue-derived cells was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing markers related to adhesion (CD29, CD166) and stem cells (CD90, CD105). The tissue-derived cells were able to differentiate into osteoblast, chondrocyte and adipocyte lineage pathways when stimulated in the appropriate differentiating conditions. However, compared with BMSCs, tissue-derived cells showed less capacity for multilineage differentiation when the level of differentiation was assessed in monolayer culture by analysing the expression of tissue-specific genes by reverse transcription polymerase chain reaction (RT-PCR) and histology. In high density pellet cultures, tissue-derived cells were able to differentiate into chondrocytes, expressing chondrocyte markers such as proteoglycans, type II collagen and aggrecan. Taken together, these results indicate that cells derived from tissue explant cultures reserved certain degree of differentiation properties of MSCs in vitro.