996 resultados para INDUCIBLE GENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common shrew (Sorer araneus) is subdivided into several chromosomal races. As hybrid zones between them have been characterized, this organism is of particular interest in studying the role of chromosomes in speciation. Six microsatellite loci were used to evaluate the level of gene how in the S. araneus hybrid zone between the Cordon and Valais races. Most of these loci were very polymorphic, the total number of alleles detected per locus ranging from 3 to 20. Using Mantel tests, we showed that the effect of rivers as barriers to gene flow is less important at this sampling scale. The effect of the chromosomal race is of particular importantance in diminishing gene flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcorneoscleral iontophoresis was used to enhance ocular penetration of a 21-bp NH(2) protected anti-NOSII oligonucleotides (ODNs) (fluorescein or infrared-41 labeled) in Lewis rats. Both histochemical localization and acrylamide sequencing gels were used. To evaluate the potential to down-regulate NOSII expression in the rat model of endotoxin-induced uveitis (EIU), anti-sense NOSII ODN, scrambled ODN or saline were iontophorezed into these animals' eyes. Iontophoresis facilitated the penetration of intact ODNs into the intraocular tissues of the rat eye and only the eyes receiving ODNs and electrical current demonstrated intact ODNs within the ocular tissues of both segments of the eye. Iontophoresis of anti-NOSII ODN significantly down-regulated the expression of NOSII expression in iris/ciliary body compared to the saline or scrambled ODN treated eyes. Nitrite production was also significantly reduced in the anti-NOSII applied eyes compared to those treated with saline. Using this system, intraocular delivery of ODNs can be significantly enhanced increasing the potential for successful gene therapy for human eye diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY When exposed to heat stress, plants display a particular set of cellular and molecular responses, such as chaperones expression, which are highly conserved in all organisms. In chapter 1, I studied the ability of heat shock genes to become transiently and abundantly induced under various temperature regimes. To this aim, I designed a highly sensitive heat-shock dependent conditional gene expression system in the moss Physcomitrella patens, using the soybean heatinducible promoter (hsp17.3B). Heat-induced expression of various reporter genes was over three orders of magnitude, in tight correlation with the intensity and duration of the heat treatments. By performing repeated heating/cooling cycles, a massive accumulation of recombinant proteins was obtained. Interestingly, the hsp17.3B promoter was also activated by specific organic chemicals. Thus, in chapter 2, I took advantage of the extreme sensitivity of this promoter to small temperature variations to further address the role of various natural and organic chemicals and develop a plant based-bioassay that can serve as an early warning indicator of toxicity by pollutants and heavy metals. A screen of several organic pollutants from textile and paper industry showed that chlorophenols as well as sulfonated anthraquinones elicited a heat shock like response at noninducing temperatures. Their effects were synergistically amplified by mild elevated temperatures. In contrast to standard methods of pollutant detection, this plant-based biosensor allowed to monitor early stress-responses, in correlation with long-term toxic effect, and to attribute effective toxicity thresholds for pollutants, in a context of varying environmental cues. In chapter 3, I deepened the study of the primary mechanism by which plants sense mild temperature variations and trigger a cellular signal leading to the heat shock response. In addition to the above described heat-inducible reporter line, I generated a P. patens transgenic line to measure, in vivo, variations of cytosolic calcium during heat treatment, and another line to monitor the role of protein unfolding in heat-shock sensing and signalling. The heat shock signalling pathway was found to be triggered by the plasma membrane, where temperature up shift specifically induced the transient opening of a putative high afimity calcium channel. The calcium influx triggered a signalling cascade leading to the activation of the heat shock genes, independently on the presence of misfolded proteins in the cytoplasm. These results strongly suggest that changes in the fluidity of the plasma membrane are the primary trigger of the heatshocksignalling pathway in plants. The present thesis contributes to the understanding of the basic mechanism by which plants perceive and respond to heat and chemical stresses. This may contribute to developing appropriate better strategies to enhance plant productivity under the increasingly stressful environment of global warming. RÉSUME Les plantes exposées à des températures élevées déclenchent rapidement des réponses cellulaires qui conduisent à l'induction de gènes codant pour les heat shock proteins (HSPs). En fonction de la durée d'exposition et de la vitesse à laquelle la température augmente, les HSPs sont fortement et transitoirement induites. Dans le premier chapitre, cette caractéristique aété utilisée pour développer un système inductible d'expression de gènes dans la mousse Physcomitrella patens. En utilisant plusieurs gènes rapporteurs, j'ai montré que le promoteur du gène hsp17.3B du Soja est activé d'une manière. homogène dans tous les tissus de la mousse proportionnellement à l'intensité du heat shock physiologique appliqué. Un très fort taux de protéines recombinantes peut ainsi être produit en réalisant plusieurs cycles induction/recovery. De plus, ce promoteur peut également être activé par des composés organiques, tels que les composés anti-inflammatoires, ce qui constitue une bonne alternative à l'induction par la chaleur. Les HSPs sont induites pour remédier aux dommages cellulaires qui surviennent. Étant donné que le promoteur hsp17.3B est très sensible à des petites augmentations de température ainsi qu'à des composés chimiques, j'ai utilisé les lignées développées dans le chapitre 1 pour identifier des polluants qui déclenchent une réaction de défense impliquant les HSPs. Après un criblage de plusieurs composés, les chlorophénols et les antraquinones sulfonés ont été identifiés comme étant activateurs du promoteur de stress. La détection de leurs effets a été réalisée seulement après quelques heures d'exposition et corrèle parfaitement avec les effets toxiques détectés après de longues périodes d'exposition. Les produits identifiés montrent aussi un effet synergique avec la température, ce qui fait du biosensor développé dans ce chapitre un bon outil pour révéler les effets réels des polluants dans un environnement où les stress chimiques sont combinés aux stress abiotiques. Le troisième chapitre est consacré à l'étude des mécanismes précoces qui permettent aux plantes de percevoir la chaleur et ainsi de déclencher une cascade de signalisation spécifique qui aboutit à l'induction des gènes HSPs. J'ai généré deux nouvelles lignées afin de mesurer en temps réel les changements de concentrations du calcium cytosolique ainsi que l'état de dénaturation des protéines au cours du heat shock. Quand la fluidité de la membrane augmente après élévation de la température, elle semble induire l'ouverture d'un canal qui permet de faire entrer le calcium dans les cellules. Ce dernier initie une cascade de signalisation qui finit par activer la transcription des gènes HSPs indépendamment de la dénaturation de protéines cytoplasmiques. Les résultats présentés dans ce chapitre montrent que la perception de la chaleur se fait essentiellement au niveau de la membrane plasmique qui joue un rôle majeur dans la régulation des gènes HSPs. L'élucidation des mécanismes par lesquels les plantes perçoivent les signaux environnementaux est d'une grande utilité pour le développement de nouvelles stratégies afin d'améliorer la productivité des plantes soumises à des conditions extrêmes. La présente thèse contribue à décortiquer la voie de signalisation impliquée dans la réponse à la chaleur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess the phenotype of patients in a large 3 generation Swiss family with X-linked retinitis pigmentosa (XLRP) due to a novel nonsense mutation Glu20stop in RP2 gene and to correlate with the genotype. Methods: 6 affected patients (1 male, 5 females, age range: 23 - 73 years) were assessed with a complete ophthalmologic examination. All had fundus autofluorescence images, standardised electroretinography, Goldmann visual fields and Optical Coherence Tomography. In addition, medical records of 2 affected male patients were reviewed. Blood sample was taken for molecular analysis. Results: The male patients were severely affected at a young age with early macular involvement. The youngest 23 y old male had also high myopia and vision of less than 0.05 according to Snellen EDTRS chart bilaterally. All 5 female carriers had some degree of rod-cone dystrophy, but no macular involvement. The visual acuity was 1.0 in the younger carriers, while the 73 years old had VA of 0.5. Two females had mild myopia (range -0.75 to -2) and one had anisometropia of 3.5D, with the more severely affected eye being myopic. Three out of 5 female carriers had optic nerve drusen. Conclusions: We report a novel Glu20stop mutation in RP2 gene, which is a rare cause of XLRP. Our description of severe phenotype in male patients with high myopia and early macular atrophy confirms previous reports. Unlike previous reports, all our female carriers had RP, but not macular involvement or high myopia. The identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE). The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes) resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells), while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.Gene Therapy advance online publication, 27 June 2013; doi:10.1038/gt.2013.36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Male carriers of the FMR1 premutation are at risk of developing the fragile X-associated tremor/ataxia syndrome (FXTAS), a newly recognised and largely under-diagnosed late onset neurodegenerative disorder. Patients affected with FXTAS primarily present with cerebellar ataxia and intention tremor. Cognitive decline has also been associated with the premutation, but the lack of data on its penetrance is a growing concern for clinicians who provide genetic counselling. METHODS: The Mattis Dementia Rating Scale (MDRS) was administered in a double blind fashion to 74 men aged 50 years or more recruited from fragile X families (35 premutation carriers and 39 intrafamilial controls) regardless of their clinical manifestation. Based on previous publications, marked cognitive impairment was defined by a score <or=123 on the MDRS. RESULTS: Both logistic and survival models confirmed that in addition to age and education level, premutation size plays a significant (p<0.01 and p<0.03 for logistic and survival model, respectively) role in cognitive impairment. The estimated penetrance of marked cognitive impairment in our sample (adjusted for the mean age 63.4 years and mean education level 9.7 years) for midsize/large (70-200 CGG) and small (55-69 CGG) premutation alleles was 33.3% (relative risk (RR) 6.5; p = 0.01) and 5.9% (RR 1.15; p = 0.9) respectively. Penetrance in the control group was 5.1%. CONCLUSIONS: Male carriers of midsize to large premutation alleles had a sixfold increased risk of developing cognitive decline and the risk increases with allele size. In addition, it was observed that cognitive impairment may precede motor symptoms. These data provide guidance for genetic counselling although larger samples are required to refine these estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.