997 resultados para INDUCED NEPHROPATHY
Resumo:
The induced flow fields by internal solitary waves and its actions on cylindrical piles in density stratified ocean with a basic density profile and a basic velocity profile are investigated. Some results, such as the time evolution of flow fields and hydrodynamic forces on the piles are yielded both by theoretical analysis and numerical calculation for general and specific cases. Several kinds of ambient sea conditions of the South China Sea are specified for numerical simulation. Moreover, the effects of relative density difference, depth ratio and wave steepness on maximal total force and total torque are analyzed.
Resumo:
The flow-induced vibration of a cylinder with two degrees of freedom near a rigid wall under the action of steady flow is investigated experimentally. The vibration amplitude and frequency of the cylinder and the vortex shedding frequency at the wake flow region of the cylinder are measured. The influence of gap-to-diameter ratio upon the amplitude response is analyzed. The experimental results indicate that when the reduced velocity (Vr) is in the range of 1.2 < Vr < 2.6, only streamwise vibration with small amplitude occurs, whose frequency is quite close to its natural frequency in the still water. When the reduced velocity Vr > 3.4, both the streamwise and transverse vibrations of the cylinder occur. In this range, the amplitudes of transverse vibration are much larger than those of streamwise vibrations, and the amplitudes of the streamwise vibration also get larger than those at the range of 1.2 < Vr < 2.6. At the range of Vr > 3.4, the frequency of streamwise vibration undergoes a jump at certain values of Vr, at which the streamwise vibrating frequency is twice as much as the transverse one. However, when the streamwise vibration does not experience a jump, its frequency is the same as that of the transverse vibration. The maximum values of second streamwise and transverse vibration amplitudes increase with increasing gap-to-diameter ratios.
Resumo:
Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.
Resumo:
15 p.
Resumo:
There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime.
Resumo:
Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D-1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia.
Resumo:
Background: A remarkable range of biological functions have been ascribed to resveratrol. Recently, this polyphenol has been shown to have body fat lowering effects. The aim of the present study was to assess some of the potential underlying mechanisms of action which take place in adipose tissue. Methods: Sixteen male Sprague-Dawley rats were randomly divided into two groups: control and treated with 30 mg resveratrol/kg body weight/d. All rats were fed an obesogenic diet and after six weeks of treatment white adipose tissues were dissected. Lipoprotein lipase activity was assessed by fluorimetry, acetyl-CoA carboxylase by radiometry, and malic enzyme, glucose-6P-dehydrogenase and fatty acid synthase by spectrophotometry. Gene expression levels of acetyl-CoA carboxylase, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase, adipose triglyceride lipase, PPAR-gamma, SREBP-1c and perilipin were assessed by Real time RT-PCR. The amount of resveratrol metabolites in adipose tissue was measured by chromatography. Results: There was no difference in the final body weight of the rats; however, adipose tissues were significantly decreased in the resveratrol-treated group. Resveratrol reduced the activity of lipogenic enzymes, as well as that of heparin-releasable lipoprotein lipase. Moreover, a significant reduction was induced by this polyphenol in hormone-sensitive lipase mRNA levels. No significant changes were observed in other genes. Total amount of resveratrol metabolites in adipose tissue was 2.66 +/- 0.55 nmol/g tissue. Conclusions: It can be proposed that the body fat-lowering effect of resveratrol is mediated, at least in part, by a reduction in fatty acid uptake from circulating triacylglycerols and also in de novo lipogenesis.
Resumo:
Despite being the most effective treatment for Parkinson's disease, L-DOPA causes a development of dyskinetic movements in the majority of treated patients. L-DOPA-induced dyskinesia is attributed to a dysregulated dopamine transmission within the basal ganglia, but serotonergic and noradrenergic systems are believed to play an important modulatory role. In this study, we have addressed the role of the locus coeruleus nucleus (LC) in a rat model of L-DOPA-induced dyskinesia. Single-unit extracellular recordings in vivo and behavioural and immunohistochemical approaches were applied in rats rendered dyskinetic by the destruction of the nigrostriatal dopamine neurons followed by chronic treatment with L-DOPA. The results showed that L-DOPA treatment reversed the change induced by 6-hydroxydopamine lesions on LC neuronal activity. The severity of the abnormal involuntary movements induced by L-DOPA correlated with the basal firing parameters of LC neuronal activity. Systemic administration of the LC-selective noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine did not modify axial, limb, and orolingual dyskinesia, whereas chemical destruction of the LC with ibotenic acid significantly increased the abnormal involuntary movement scores. These results are the first to demonstrate altered LC neuronal activity in 6-OHDA lesioned rats treated with L-DOPA, and indicate that an intact noradrenergic system may limit the severity of this movement disorder.