973 resultados para IMMUNE ACTIVATION
Resumo:
This paper examines whether human rights naming and shaming destabilizes the rule of authoritarian leaders. We argue that human rights shaming can destabilize autocratic leaders by signaling international disapproval to elites in the targeted country, increasing their capacity to replace the incumbent. In personalist regimes, shaming increases the risk of irregular exit because regime elite do not have a means to peacefully replace the incumbent. Shaming campaigns also decrease foreign aid and international trade in personalist regimes, denying the leader access to resources to pay his coalition – further destabilizing his rule. In non-personalist regimes where parties or the military allow elites to peacefully replace incumbents, human rights shaming increases the risk of regular turnover of power, but has little effect on the risk of irregular exit or international flows of aid and trade. These findings have implications for understanding when and where shaming campaigns are likely to reduce or deter repression.
Resumo:
BACKGROUND: We previously reported that myeloid cells can induce mucosal healing in a mouse model of acute colitis. Promotion of mucosal repair is becoming a major goal in the treatment of Crohn's disease. Our aim in this study is to investigate the pro-repair function of myeloid cells in healthy donor (HD) and Crohn's disease patients (CD). METHODS: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples by Ficoll density gradient. Monocytic CD14+ cells were positively selected by Macs procedure and then differentiated ex-vivo into macrophages (Mφ). The repair function of PBMC, CD14+ monocytic cells and macrophages were evaluated in an in vitro wound healing assay. RESULTS: PBMC and CD14+ myeloid cells from HD and CD were not able to repair at any tested cell concentration. Remarkably, HD Mφ were able to induce wound healing only at high concentration (105 added Mφ), but, if activated with heat killed bacteria, they were able to repair even at very low concentration. On the contrary, not activated CD Mφ were not able to promote healing at any rate, but this function was restored upon activation. CONCLUSION: We showed that CD Mφ in their steady state, unlike HD Mφ, are defective in promoting wound healing. Our results are in keeping with the current theory of CD as an innate immunodeficiency. Defective Mφ may be responsible to the mucosal repair defects in CD patients and to the subsequent chronic activation of the adaptive immune response.
Resumo:
There is accumulating evidence that invertebrates can acquire long-term protection against pathogens through immune priming. However, the range of pathogens eliciting immune priming and the specificity of the response remain unclear. Here, we tested if the exposure to a natural fungal pathogen elicited immune priming in ants. We found no evidence for immune priming in Formica selysi workers exposed to Beauveria bassiana. The initial exposure of ants to the fungus did not alter their resistance in a subsequent challenge with the same fungus. There was no sign of priming when using homologous and heterologous combinations of fungal strains for exposure and subsequent challenges at two time intervals. Hence, within the range of conditions tested, the immune response of this social insect to the fungal pathogen appears to lack memory and strain-specificity. These results show that immune priming is not ubiquitous across pathogens, hosts and conditions, possibly because of immune evasion by the pathogen or efficient social defences by the host.
Resumo:
Résumé : Les relations entre un parasite et son hôte sont avant tout marquées par le coût pour l'hôte que représente la ponction de ressources au profit du parasite et ses conséquences sur les traits d'histoires de vie de l'hôte. Pour contenir la réduction de leur valeur reproductive, les hôtes ont acquis au cours de l'évolution des mécanismes soit de lutte contre les parasites, soit de réallocations des ressources. Curieusement les effets des ectoparasites sur la biologie de mammifères ont été peu étudiés. Dans une première expérience à long terme, nous avons examiné sous un angle intégratif si les puces Nosopsyllus fasciatus affectent certains paramètres physiologiques des campagnols des champs Microtus arvalis. Nous avons également testé si les puces peuvent réduire la longévité et si oui, si ce pourrait être dû à une accélération de la sénescence. Ensuite nous avons testé si la simple activation répétée du système immunitaire comme lors d'une infestation chronique pouvait aussi réduire la longévité. Dans une dernière expérience, nous avons d'abord testé si l'infestation par des puces de jeunes campagnols au stade néonatal (21 jours) pouvait modifier leur développement et leur phénotype adulte. Puis nous avons testé si la modification du phénotype adulte est une réponse prédite et potentiellement adaptative pour minimiser les effets des puces à l'âge adulte. Nos résultats montrent que l'infestation par des puces réduit la croissance subadulte, induit une forte anémie et une immunodépression, et augmente le métabolisme de repos. De plus les puces réduisent la longévité et la taille des testicules, réduisant fortement le succès reproducteur potentiel des individus parasités. La taille finale, c'est-à-dire le développement pré-adulte, détermine en grande part la longévité. La réduction de longévité ne devrait pas être due à l'investissement au profit du système immunitaire car l'activation chronique seule du système immunitaire ne réduit pas la longévité. L'infestation néonatale retarde légèrement le développement mais surtout modifie l'hématocrite et réduit les performances locomotrices des campagnols plus de 3 mois après l'infestation. Les effets immédiats du parasitisme sur la physiologie semblent bien supérieurs comparés aux effets à long terme. Nous n'avons pas d'éléments permettant d'affirmer que le parasitisme néonatal prépare les campagnols à faire face aux puces à l'âge adulte. Au contraire, le parasitisme néonatal interagit sur le parasitisme adulte pour augmenter le métabolisme de repos. Cette thèse offre une vision intégrative des mécanismes par lesquels les puces peuvent affecter la valeur reproductive de leurs hôtes. De façon générale, ces résultats 35 montrent l'importance des puces comme force de sélection chez les campagnols. Il est indispensable de prendre en compte les ectoparasites dans l'étude de l'écologie et des dynamiques de populations chez les mammifères. Summary : The relationship between a parasite and its host is fundamentally marked by the costs for host of the withdrawals of resources by parasite and the subsequent reduction in host life-history traits. Hosts have evolved a number of strategies to reduce these costs, either by fighting against the parasite directly or by reallocating resources to reduce costs on lifetime reproductive value. The effects of ectoparasites on burrowing mammals have been scarcely studied. In a first long-term experiment, we examined how fleas Nosopsyllus fasciatus affect physiological levels of the common vole, Microtus arvalis. We also examined whether fleas reduce longevity and if so, if it is due to an early senescence pattern. Then we tested if experimental activation of the immune system by repeated injections of an antigen could result in a shorter longevity. In the last experiment, we tested if short-lasting neonatal parasitism can have long-term effects on phenotype, and if these effects could induce a predictive response to reduce damages when parasitized at the adult stage. We found that parasitism by flea reduced subadult growth, induced anaemia and immunodepression, and increased energy consumption even when resting. Moreover fleas reduce longevity and testes size associated to splenomegaly, suggesting an overall reduction in fitness but we did not find any pattern of accelerated senescence explaining the early death of parasitized voles compared to non-parasitzed. The cost of mounting an immune response throughout life does not impair longevity, suggesting that it is the cost of parasitism that limits the longevity and not the immune investment. Neonatal infestation by fleas has long-term effects on physiology and reduces motor activity more than 3 months after infestation. The modification of physiology due to long-term effects seems weak compared to the immediate effects of adult infestation. We found no evidence that neonatal parasitism prepares voles to mount a predictive adaptive response in order to reduce effects of fleas on fitness components. On the contrary, neonatal parasitism seems to worsen the effect of adult parasitism. This thesis offers an integrative view of mechanisms by which fleas affect their host at the individual level. Overall, our results demonstrate the importance of fleas as a selective force in voles. These results highlight the importance of ectoparasitism in ecology of micromarnrnals and suggest a role in the dynamic of host populations.
Resumo:
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.
Resumo:
This paper discuses current strategies for the development of AIDS vaccines wich allow immunzation to disturb the natural course of HIV at different detailed stages of its life cycle. Mathematical models describing the main biological phenomena (i.e. virus and vaccine induced T4 cell growth; virus and vaccine induced activation latently infected T4 cells; incremental changes immune response as infection progress; antibody dependent enhancement and neutralization of infection) and allowing for different vaccination strategies serve as a backgroud for computer simulations. The mathematical models reproduce updated information on the behavior of immune cells, antibody concentrations and free viruses. The results point to some controversial outcomes of an AIDS vaccine such as an early increase in virus concentration among vaccinated when compared to nonvaccinated individuals.
Resumo:
Plasmacytoid dendritic cells (pDCs) were first described as interferon-producing cells and, for many years, their overlapping characteristics with both lymphocytes and classical dendritic cells (cDCs) created confusion over their exact ontogeny. In this Viewpoint article, Nature Reviews Immunology asks five leaders in the field to discuss their thoughts on the development and functions of pDCs--do these cells serve mainly as a major source of type I interferons or do they also make other important contributions to immune responses?
Resumo:
Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1β, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.
Resumo:
Experimental leishmaniasis offers a well characterized model of T helper type 1 cell (Th1)-mediated control of infection by an intracellular organism. Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination. The early CD4(+) T cell response in these mice is oligoclonal and reflects the expansion of Vbeta4/ Valpha8-bearing T cells in response to a single epitope from the parasite Leishmania homologue of mammalian RACK1 (LACK) antigen. Interleukin 4 (IL-4) generated by these cells is believed to direct the subsequent Th2 response. We used T cells from T cell receptor-transgenic mice expressing such a Vbeta4/Valpha8 receptor to characterize altered peptide ligands with similar affinity for I-Ad. Such altered ligands failed to activate IL-4 production from transgenic LACK-specific T cells or following injection into BALB/c mice. Pretreatment of susceptible mice with altered peptide ligands substantially altered the course of subsequent infection. The ability to confer a healer phenotype on otherwise susceptible mice using altered peptides that differed by a single amino acid suggests limited diversity in the endogenous T cell repertoire recognizing this antigen.
Resumo:
Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.
Resumo:
Peritoneal macrophage activation as measured by H2O2 release and histopathology was compared between Swiss mice and Calomys callosus, a wild rodent, reservoir of Trypanosoma cruzi, during the course of infection with four strains of this parasite. In mice F and Y strain infections result in high parasitemia and mortality while with silvatic strains Costalimai and M226 parasitemia is sub-patent, with very low mortality. H2O2 release peaked at 33,6 and 59 nM/2 x 10(elevado a sexta potência) cells for strains Y and F, respectively, 48 and 50 nM/2 x 10 (elevado a sexta potência) for strains Costalimai and M226, at different days after infection. Histopathological findings of myositis, myocarditis, necrotizing artheritis and abscence of macrophage parasitism were foud for strains F and Costalimai. Y strain infection presented moderate myocarditis and myositis, with parasites multiplying within macrophages. In C. callosus all four strains resulted in patent parasitemia wich was eventually overcome, with scarce mortality. H2O2 release for strains Y or F was comparable to that of mice-peaks of 27 and 53 nM/2 x 10 (elevado a sexta potência) cells, with lower values for strains Costalimai and M226 - 16.5 and 4.6 nM/2 x 10(elevado a sexta potência)cells, respectively. Histopathological lesions with Y and F strain injected animals were comparable to those of mice at the onset of infections; they subsided completely at the later stages with Y strain and partially with F strain infected C. callosus. In Costalimai infected C. callosus practically no histopathological alterations were observed.
Resumo:
Activation of the transcription factor nuclear factor (NF)-kappaB is essential for the normal functioning of the immune system. Deregulated NF-kappaB signalling in lymphocytes can lead to immunodeficiency, but also to autoimmunity or lymphomas. Many of the signalling components controlling NF-kappaB activation in lymphocytes are now known, but it is less clear how distinct molecular components of this pathway are regulated. Here, we summarize recent findings on post-translational modifications of intracellular components of this pathway. Phosphorylation of the CARMA1 and BCL10 proteins and ubiquitylation of BCL10 affect the formation and stability of the CARMA1-BCL10-MALT1 (CBM) complex, and also control negative feedback regulation of the NF-kappaB signalling pathway. Moreover, the study of BCL10 phosphorylation isoforms has revealed a new mechanism controlling BCL10 nuclear translocation and an unexpected role for BCL10 in the regulation of the actin cytoskeleton.
Resumo:
We have previously demonstrated that the bZIP transcription factor CREB-2, also called ATF-4, trans-activates, in association with the viral protein Tax, the human T-cell leukemia virus type I (HTLV-I) promoter. In this study, we have examined whether CREB-2 acetylation affects transcriptional activation mediated by Tax. We present evidence that CREB-2 is acetylated in vitro and in vivo. CREB-2 is acetylated in two regions: the basic domain of the bZIP (from amino acid residue 270 to 300) and the short basic domain (from 342 to 351) located downstream from the bZIP. We also demonstrate that CREB-2 is acetylated by p300/CBP but not by p/CAF. Moreover, replacement of lysine by arginine in the basic domains decreases the trans-activating capacity of CREB-2. However, in the presence of Tax, the HTLV-I transcription remains fully activated by these CREB-2 mutants. Although we cannot totally exclude that the mutations could also affect CREB-2 structure and activity independent of acetylation, our results suggest that activation of the viral promoter in the presence of Tax is independent of the CREB-2 acetylation.
Resumo:
The authors devised a cytotoxic assay based on cytofluorometric analysis of target surface markers in order to compare lysis exerted in vitro by cytotoxic T lymphocytes (CTLs) on different cell subsets in the context of a single lymphoid target cell population. Using this assay, the authors evaluated when oncorna virus-infected lymphocytes become a suitable target for virus-specific T cell effectors. A lymphocyte population from Moloney-murine leukaemia virus (M-MuLV)-infected (carrier) mice, in which the proliferation of selective V beta T-cell receptor (TCR) families was induced in response to Mlsa encoded antigens, was utilized as a target. The authors observed that a virus-specific T cell clone exerted lytic activity preferentially against activated cell subsets. Moreover, virus-specific CTLs generated in mixed leucocyte tumour cell cultures (MLTC) were also able to impair the concomitant anti-Mlsa response of lymphocytes from M-MuLV carrier mice. It was found that the proliferative status of oncorna virus-infected target cells played an important role in limiting the in vitro efficacy of the immune response, and it is speculated that this phenomenon might represent an in vivo escape mechanism from immunosurveillance.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.