918 resultados para Human Health
Resumo:
Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.
Resumo:
Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.
Resumo:
Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.
Resumo:
Dilated cardiomyopathy (DCM) is a heterogeneous group of heart diseases with a strong genetic background. Currently, many human DCM cases exist where no causative mutation can be identified. DCM also occurs with high prevalence in several large dog breeds. In the Doberman Pinscher a specific DCM form characterized by arrhythmias and/or echocardiographic changes has been intensively studied by veterinary cardiologists. We performed a genome-wide association study in Doberman Pinschers. Using 71 cases and 70 controls collected in Germany we identified a genome-wide significant association to DCM on chromosome 5. We validated the association in an independent cohort collected in the United Kingdom. There is no known DCM candidate gene under the association signal. Therefore, DCM in Doberman Pinschers offers the chance of identifying a novel DCM gene that might also be relevant for human health.
Resumo:
Switzerland implemented a risk-based monitoring of Swiss dairy products in 2002 based on a risk assessment (RA) that considered the probability of exceeding a microbiological limit value set by law. A new RA was launched in 2007 to review and further develop the previous assessment, and to make recommendations for future risk-based monitoring according to current risks. The resulting qualitative RA was designed to ascertain the risk to human health from the consumption of Swiss dairy products. The products and microbial hazards to be considered in the RA were determined based on a risk profile. The hazards included Campylobacter spp., Listeria monocytogenes, Salmonella spp., Shiga toxin-producing Escherichia coli, coagulase-positive staphylococci and Staphylococcus aureus enterotoxin. The release assessment considered the prevalence of the hazards in bulk milk samples, the influence of the process parameters on the microorganisms, and the influence of the type of dairy. The exposure assessment was linked to the production volume. An overall probability was estimated combining the probabilities of release and exposure for each combination of hazard, dairy product and type of dairy. This overall probability represents the likelihood of a product from a certain type of dairy exceeding the microbiological limit value and being passed on to the consumer. The consequences could not be fully assessed due to lack of detailed information on the number of disease cases caused by the consumption of dairy products. The results were expressed as a ranking of overall probabilities. Finally, recommendations for the design of the risk-based monitoring programme and for filling the identified data gaps were given. The aims of this work were (i) to present the qualitative RA approach for Swiss dairy products, which could be adapted to other settings and (ii) to discuss the opportunities and limitations of the qualitative method.
Resumo:
Aerosols are known to have important effects on climate, the atmosphere, and human health. The extent of those effects is unknown and largely depend on the interaction of aerosols with water in the atmosphere. Ambient aerosols are complex mixtures of both inorganic and organic compounds. The cloud condensation nuclei (CCN) activities, hygroscopic behavior and particle morphology of a monocarboxylic amino acid (leucine) and a dicarboxylic amino acid (glutamic acid) were investigated. Activation diameters at various supersaturation conditions were experimentally determined and compared with Köhler theoretical values. The theory accounts for both surface tension and the limited solubility of organic compounds. It was discovered that glutamic acid aerosols readily took on water both when relative humidity was less than 100% and when the supersaturation condition was reached, while leucine did not show any water activation at those conditions. Moreover, the study also suggests that Köhler theory describes CCN activity of organic compounds well when only surface tension of the compound is taken into account and complete solubility is assumed. Single parameter ¿ was also computed using both CCN data and hygroscopic growth factor (GF). The results of ¿ range from 0.17 to 0.53 using CCN data and 0.09 to 0.2 using GFs. Finally, the study suggests that during the water-evaporation/particle-nucleation process, crystallization from solution droplets takes place at different locations: for glutamic acid at the particles¿ center and leucine at the particles¿ boundary.
Resumo:
The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.
Resumo:
The Chernobyl tragedy was the biggest accident since the beginning of the nuclear power industry. The aim of this study was to determine the role of immunological mechanisms in the development of autoimmune disorders (thyroiditis and cataract) and cancers among those workers who participated in clean-up operations in 1986. Blood samples from 165 clean-up workers aged 30-65 from Minsk and Kiev who underwent prophylactic medical examinations and from 80 healthy donors were investigated for the presence of autoimmune reactions and the appearance of onco-foetal antigens. The sera of clean-up workers were found to include the thyroid gland antigen, auto-antibodies to thyroid gland and eye antigens, and immune complexes which are normally absent or found in much lower quantities. The appearance of the clinically unmanifested thyroid gland antigen made it possible to generate a concept describing the mechanism for induction and long-term maintenance of auto-antibody production in an organism after irradiation. Lymphocytes from clean-up workers showed normally absent onco-foetal antigens (PSG and CEA). The data obtained indicate that clean-up workers represent a high risk group for autoimmune and cancer diseases. Immunological findings reveal the long-lasting effects of low doses of irradiation and may be used in prognosis and monitoring of human health.
Resumo:
BACKGROUND: Radio-frequency electromagnetic fields (RF EMF) of mobile communication systems are widespread in the living environment, yet their effects on humans are uncertain despite a growing body of literature. OBJECTIVES: We investigated the influence of a Universal Mobile Telecommunications System (UMTS) base station-like signal on well-being and cognitive performance in subjects with and without self-reported sensitivity to RF EMF. METHODS: We performed a controlled exposure experiment (45 min at an electric field strength of 0, 1, or 10 V/m, incident with a polarization of 45 degrees from the left back side of the subject, weekly intervals) in a randomized, double-blind crossover design. A total of 117 healthy subjects (33 self-reported sensitive, 84 nonsensitive subjects) participated in the study. We assessed well-being, perceived field strength, and cognitive performance with questionnaires and cognitive tasks and conducted statistical analyses using linear mixed models. Organ-specific and brain tissue-specific dosimetry including uncertainty and variation analysis was performed. RESULTS: In both groups, well-being and perceived field strength were not associated with actual exposure levels. We observed no consistent condition-induced changes in cognitive performance except for two marginal effects. At 10 V/m we observed a slight effect on speed in one of six tasks in the sensitive subjects and an effect on accuracy in another task in nonsensitive subjects. Both effects disappeared after multiple end point adjustment. CONCLUSIONS: In contrast to a recent Dutch study, we could not confirm a short-term effect of UMTS base station-like exposure on well-being. The reported effects on brain functioning were marginal and may have occurred by chance. Peak spatial absorption in brain tissue was considerably smaller than during use of a mobile phone. No conclusions can be drawn regarding short-term effects of cell phone exposure or the effects of long-term base station-like exposure on human health.
Resumo:
ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Resumo:
gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.
Resumo:
Only a subset of Shiga toxin (Stx)-producing Escherichia coli (STEC) are human pathogens, but the characteristics that account for differences in pathogenicity are not well understood. In this study, we investigated the distribution of the stx variants coding for Stx2 and its variants in highly virulent STEC of seropathotype A and low-pathogenic STEC of seropathotype C. We analysed and compared transcription of the corresponding genes, production of Shiga toxins, and stx-phage release in basal as well as in induced conditions. We found that the stx(2) variant was mainly associated with strains of seropathotype A, whereas most of the strains of seropathotype C possessed the stx(2-vhb) variant, which was frequently associated with stx(2), stx(2-vha) or stx(2c). Levels of stx(2) and stx(2)-related mRNA were higher in strains belonging to seropathotype A and in those strains of seropathotype C that express the stx(2) variant than in the remaining strains of seropathotype C. The stx(2-vhb) genes were the least expressed, in basal as well as in induced conditions, and in many cases did not seem to be carried by an inducible prophage. A clear correlation was observed between stx mRNA levels and stx-phage DNA in the culture supernatants, suggesting that most stx(2)-related genes are expressed only when they are carried by a phage. In conclusion, some relationship between stx(2)-related gene expression in vitro and the seropathotype of the STEC strains was observed. A higher expression of the stx(2) gene and a higher release of its product, in basal as well as in induced conditions, was observed in pathogenic strains of seropathotype A. A subset of strains of seropathotype C shows the same characteristics and could be a high risk to human health.
Resumo:
Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.
Resumo:
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX have led to several contamination sites across the United States. RDX is both persistent in the environment and a threat to human health, making its remediation vital. The use of plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is being considered as a possible solution. In the present study, the tropical grass Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease in RDX concentration in the media of both controls and plant treatments was seen within the first 18 hours of the experiment with the greatest loss in RDX over time occurring within the first 6 hours of exposure. The loss was similar in both controls and plant exposures and possibly attributed to rapid uptake by the containers. A plant from one treatment at each of the three concentrations was harvested at Day 10, 20 and 30 throughout the experiment and extracted to determine the localization of RDX within the tissue and potentially identify any metabolites on the basis of differing retention times. Of the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% respectively, was quantified in vetiver extracts, with the majority of the RDX being localized to the roots. All plants not yet harvested were harvested on Day 30 of the experiment. A total of three plants exposed to each concentration level as well as the control, were extracted and analyzed with HPLC to determine amount of RDX taken up, localization of RDX within the plant tissue, and potentially identify any metabolites. Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was observed in plants exposed to all the different concentrations of RDX, control plants grown in media not exposed to RDX showed the greatest biomass loss of all the treatments. There was also little variation in chlorophyll content between the different concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 10 by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a plant system in the phytoremediation of RDX.
Resumo:
Free radicals are present in cigarette smoke and can have a negative effect on human health by attacking lipids, nucleic acids, proteins and other biologically important species. However, because of the complexity of the tobacco smoke system and the dynamic nature of radicals, little is known about the identity of the radicals, and debate continues on the mechanisms by which those radicals are produced. In this study, acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5- tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography- mass spectrometry (LC-MS). Simulations of acetyl radical generation were performed using Matlab and the Master Chemical Mechanism (MCM) programs. A range of 10- 150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a GF/F particle filter was placed before the trapping zone. Computational simulations show that NO/NO2 reacts with isoprene, initiating chain reactions to produce a hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. With initial concentrations of NO, acetaldehyde, and isoprene in a real-world cigarette smoke scenario, these mechanisms can account for the full amount of acetyl radical detected experimentally. This study contributes to the overall understanding of the free radical generation in gas phase cigarette smoke.