921 resultados para Human Activities Rhythmic
Resumo:
Factor V (FV) present in platelet alpha-granules has a significant but incompletely understood role in hemostasis. This report demonstrates that a fraction of platelets express very high levels of surface-bound, alpha-granule FV on simultaneous activation with 2 agonists, thrombin and convulxin, an activator of the collagen receptor glycoprotein VI. This subpopulation of activated platelets represents 30.7% +/- 4.7% of the total population and is referred to as convulxin and thrombin-induced-FV (COAT-FV) platelets. COAT-FV platelets are also observed on activation with thrombin plus collagen types I, V, or VI, but not with type III. No single agonist examined was able to produce COAT-FV platelets, although ionophore A23187 in conjunction with either thrombin or convulxin did generate this population. COAT-FV platelets bound annexin-V, indicating exposure of aminophospholipids and were enriched in young platelets as identified by the binding of thiazole orange. The functional significance of COAT-FV platelets was investigated by demonstrating that factor Xa preferentially bound to COAT-FV platelets, that COAT-FV platelets had more FV activity than either thrombin or A23187-activated platelets, and that COAT-FV platelets were capable of generating more prothrombinase activity than any other physiologic agonist examined. Microparticle production by dual stimulation with thrombin and convulxin was less than that observed with A23187, indicating that microparticles were not responsible for all the activities observed. These data demonstrate a new procoagulant component produced from dual stimulation of platelets with thrombin and collagen. COAT-FV platelets may explain the unique role of alpha-granule FV and the hemostatic effectiveness of young platelets. (Blood. 2000;95:1694-1702)
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.
Resumo:
Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.
Resumo:
The migration of monocytes to sites of inflammation is largely determined by their response to chemokines. Although the chemokine specificities and expression patterns of chemokine receptors are well defined, it is still a matter of debate how cells integrate the messages provided by different chemokines that are concomitantly produced in physiological or pathological situations in vivo. We present evidence for one regulatory mechanism of human monocyte trafficking. Monocytes can integrate stimuli provided by inflammatory chemokines in the presence of homeostatic chemokines. In particular, migration and cell responses could occur at much lower concentrations of the CCR2 agonists, in the presence of chemokines (CCL19 and CCL21) that per se do not act on monocytes. Binding studies on CCR2(+) cells showed that CCL19 and CCL21 do not compete with the CCR2 agonist CCL2. Furthermore, the presence of CCL19 or CCL21 could influence the degradation of CCL2 and CCL7 on cells expressing the decoy receptor D6. These findings disclose a new scenario to further comprehend the complexity of chemokine-based monocyte trafficking in a vast variety of human inflammatory disorders.
Resumo:
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Resumo:
OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.
Resumo:
DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD1-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD1 binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-a-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD1 for binding and inhibit enzyme activity with IC50 values in the mM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD1 with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATPdependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.
Resumo:
Lake sediments from Lauenensee (1381 m a.s.l.), a small lake in the Bernese Alps, were analysed to reconstruct the vegetation and fire history. The chronology is based on 11 calibrated radiocarbon dates on terrestrial plant macrofossils suggesting a basal age of 14,200 cal. BP. Pollen and macrofossil data imply that treeline never reached the lake catchment during the Bølling–Allerød interstadial. Treeline north of the Alps was depressed by c. 300 altitudinal meters, if compared with southern locations. We attribute this difference to colder temperatures and to unbuffered cold air excursions from the ice masses in northern Europe. Afforestation started after the Younger Dryas at 11,600 cal. BP. Early-Holocene tree-Betula and Pinus sylvestris forests were replaced by Abies alba forests around 7500 cal. BP. Continuous high-resolution pollen and macrofossil series allow quantitative assessments of vegetation dynamics at 5900–5200 cal. BP (first expansion of Picea abies, decline of Abies alba) and 4100–2900 cal. BP (first collapse of Abies alba). The first signs of human activity became noticeable during the late Neolithic c. 5700–5200 cal. BP. Cross-correlation analysis shows that the expansion of Alnus viridis and the replacement of Abies alba by Picea abies after c. 5500 cal. BP was most likely a consequence of human disturbance. Abies alba responded very sensitively to a combination of fire and grazing disturbance. Our results imply that the current dominance of Picea abies in the upper montane and subalpine belts is a consequence of anthropogenic activities through the millennia.
Resumo:
Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.
Resumo:
Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652ma.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early-middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitudedependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200-7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech (Fagus) forest development which in return caused a distinctive yew (Taxus) decline.We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).
Resumo:
PURPOSE Women with epilepsy apparently have a higher incidence of polycystic ovary syndrome (PCOS) than do women without epilepsy. Whether the underlying disease or the antiepileptic drug (AED) treatment is responsible for this increased risk is unknown, although clinical reports implicate valproic acid (VPA) as a potential cause. The steroidogenic enzymes 3beta HSDII (3beta-hydroxysteroid dehydrogenase) and P450c17 (17alpha-hydroxylase/17,20 lyase) are essential for C19 steroid biosynthesis, which is enhanced during adrenarche and in PCOS. METHODS To determine whether the AEDs VPA, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LYG) directly affect the activities of human 3beta HSDII and P450c17, we added them to yeast expressing human P450c17 or 3beta HSDII and assayed enzymatic activities in the microsomal fraction. RESULTS Concentrations of VPA < or = 10 mM had no effect on activities of P450c17; however, VPA inhibited 3beta HSDII activity starting at 0.3 mM (reference serum unbound concentration, 0.035-0.1 mM) with an IC50 of 10.1 mM. CBZ, TPM, and LTG did not influence 3beta HSDII or P450c17 activities at typical reference serum unbound concentrations, but did inhibit 3beta HSDII and P450c17 at concentrations >10-fold higher. CONCLUSIONS None of the tested AEDs influenced 3beta HSDII or P450c17 activities at concentrations normally used in AED therapy. However, VPA started to inhibit 3beta HSDII activity at concentrations 3 times above the typical reference serum unbound concentration. Because inhibition of 3beta HSDII activity will shift steroidogenesis toward C19 steroid production when P450c17 activities are unchanged, very high doses of VPA may promote C19 steroid biosynthesis, thus resembling PCOS. CBZ, TPM, and LTG influenced 3beta HSDII and P450c17 only at toxic concentrations.
Resumo:
Cytochrome P450c17 catalyzes steroidogenic 17alpha-hydroxylase and 17,20 lyase activities. Expression of the gene for P450c17 is cAMP dependent, tissue specific, developmentally programmed, and varies among species. Binding of Sp1, Sp3, and NF1-C (nuclear factor 1-C) to the first 227 bp of 5'flanking DNA (-227/LUC) is crucial for basal transcription in human NCI-H295A adrenal cells. Human placental JEG-3 cells contain Sp1, Sp3, and NF1, but do not express -227/LUC, even when transfected with a vector expressing steroidogenic factor 1 (SF-1). Therefore, other factors are essential for basal expression of P450c17. Deoxyribonuclease I footprinting and EMSAs identified a GATA consensus site at -64/-58 and an SF-1 site at -58/-50. RT-PCR identified GATA-4, GATA-6, and SF-1 in NCI-H295A cells and GATA-2 and GATA-3, but not GATA-4, GATA-6, or SF-1 in JEG-3 cells. Cotransfection of either GATA-4 or GATA-6 without SF-1 activated -227/LUC in JEG-3 cells, but cotransfection of GATA-2 or GATA-3 with or without SF-1 did not. Surprisingly, mutation of the GATA binding site in -227/LUC increased GATA-4 or GATA-6 induced activity, whereas mutation of the Sp1/Sp3 site decreased it. Furthermore, promoter constructs including the GATA site, but excluding the Sp1/Sp3 site at -196/-188, were not activated by GATA-4 or GATA-6, suggesting an interaction between Sp1/Sp3 and GATA-4 or GATA-6. Glutathione-S-transferase pull-down experiments and coimmunoprecipitation demonstrated interaction between GATA-4 or GATA-6 and Sp1, but not Sp3. Chromatin immunoprecipitation assays confirmed that this GATA-4/6 interaction with Sp1 occurred at the Sp site in the P450c17 promoter in NCI-H295A cells. Demethylation with 5-aza-2-deoxycytidine permitted JEG-3 cells to express endogenous P450c17, SF-1, GATA-4, GATA-6, and transfected -227/LUC. Thus, GATA-4 or GATA-6 and Sp1 together regulate expression of P450c17 in adrenal NCI-H295A cells and methylation of P450c17, GATA-4 and GATA-6 silence the expression of P450c17 in placental JEG-3 cells.
Resumo:
Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.