907 resultados para Horario flexible


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PhD thesis in Bioengineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Educação - Especialidade de Desenvolvimento Curricular

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Medicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Psicologia Aplicada

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramente em Ciências (área de especialização em Química).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistance to thermal and light deterioration. Gd2O3:Eu has been selected as scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young´s modulus with respect to PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and X-ray input power. In this way, Gd2O3:Eu/PVDF composites shows suitable characteristics to be used as X-ray radiation transducers, in particular for large area applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.