976 resultados para Histone Deacetylase Complexes
Resumo:
The intercalating [Ru(TAP)2(dppz)]2+ complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both L- and D-enantiomers of [Ru(TAP)2(dppz)]2+ in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and ps-time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for L- and D-complexes.
Resumo:
This chapter presents selected literature examples to review the development of the use of donor–acceptor π–π stacking interactions as transient cross-links in supramolecular polymer networks. The chapter examines notable examples of these highly specific and directional interactions and illustrates how they can be utilised to reliably produce functional supramolecular, self-assembled systems. Knowledge gained from these fundamental studies has enabled the design, synthesis and application of donor–acceptor stacked supramolecular motifs in non-covalent polymer networks, which is exemplified through detailing the production, physical properties and optimisation of healable materials.
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.
Resumo:
Since first reported in 2005, mononuclear ruthenium water oxidation catalysts have attracted a great deal of attention due to their catalytic performance and synthetic flexibility. In particular, ligands coordinated to a Ru metal centre play an important role in the catalytic mechanisms, exhibiting significant impact on catalyst efficiency, stability and activity towards water oxidation. This review focuses on finding possible correlations between the ligand effects and activity of mononuclear Ru aqua and non-aqua complexes as water oxidation catalysts. The ligand effects highlighted in the text include the electronic nature of core ligands and their substituents, the trans–cis effect, steric hindrance and the strain effect, the net charge effect, the geometric arrangement of the aqua ligand and the supramolecular effects, e.g., hydrogen bonding and influence of a pendant base. The outcome is not always obvious at the present knowledge level. Deeper understanding of the ligand effects, based on new input data, is mandatory for further progress towards a rational development of novel catalysts featuring enhanced activity in water oxidation.
Resumo:
A series of ruthenium(II) complexes [{RuCl(CO)(PMe3)3(–CHvCH–)}nX], 1a–1c (1a: n = 3, X = 3,3’’- dimethyl-2,2’:3’,2’’-terthiophene; 1b: n = 2, X = 2,2’-bithiophene; 1c: n = 2, X = 2,3-bis(3-methylthiophen- 2-yl)benzothiophene) and [{Cp*(dppe)2Ru(–CuC–)}3X], 1d (X = 3,3’’-dimethyl-2,2’:3’,2’’- terthiophene), were prepared and characterized by 1H, 13C and 31P NMR. Their redox, spectroscopic and bonding properties were studied with a range of spectro-electrochemical methods in combination with density functional theory calculations. The first two anodic steps observed for 1a and 1d are largely localized on the lateral frameworks of the molecular triangle, the direct conjugation between them being precluded due to the photostable open form of the dithienyl ethene moiety. The third anodic step is then mainly localized on the centerpiece of the triangular structure, affecting both bithiophene laterals. The experimental IR and UV-vis-NIR spectroelectrochemical data and, largely, also DFT calculations account for this explanation, being further supported by direct comparison with the anodic behavior of reference diruthenium complexes 1b and 1c.
Resumo:
Four new diruthenium complexes [{(η5-C5Me5)Ru(dppe)}2(μ-CuC–L–CuC)] featuring different bridging isomeric diethynyl benzodithiophenes viz. L = benzo[1,2-b;4,5-b’]dithiophene (complex 1), benzo[2,1-b;4,5b’]dithiophene (complex 2), benzo[1,2-b;3,4-b’]dithiophene (complex 3) and benzo[1,2-b;4,3-b’]-dithiophene (complex 4), were synthesized and characterized by molecular spectroscopic and crystallographicmethods. The subtle changes in the molecular structure introduced by the diethynyl benzodithiophene isomers have a notable impact on the stability of the oxidized complexes and their absorption characteristics in the visible-NIR and IR spectral domains. Electronic properties of stable oxidized complexes[1]n+ and [4]n+ (n = 1, 2) were investigated by cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry as well as DFT and TDDFT calculations. The results document the largely bridgelocalized character of the oxidation of parents 1 and 4. Cations [2]+ and [3]+ are too unstable at ambient temperature to afford their unambiguous characterization. UV-vis-NIR absorption spectral data combined with TDDFT calculations (BLYP35) reveal that the broad electronic absorption of [1]+ and [4]+ in the NIR region has a mixed intraligand π–π* and MLCT character, with similar contribution from their spin-delocalized trans and cis conformers. A spin-localized (mixed-valence) rotamer was only observed for [1]+ at ambient temperature as a minor component on the time scale of IR spectroscopy.
Resumo:
Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-gamma and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naive cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.
Resumo:
We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, Were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TO-tat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded loss parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype wall found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans.
Resumo:
[Ru-2(dNSAID)(4)Cl] and novel [Ru-2(dNSAID)(4)(H2O)(2)]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru-2(II, III) cores where metal-metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru-2(II,III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen, The possibility that the complexes Ru-2-ibp and Ru-2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f
Resumo:
Raman activities and degrees of depolarization are reported for 14 complexes involving methanol, ethanol and water using the MP2/aug-cc-pVDZ model. For ethanol both trans and gauche isomers are considered. The red-shifts of the OH stretching and the blue shifts of the bending tau(CO-OH) mode were analyzed for the proton-donor molecules upon hydrogen bond. The shift of the nu(CO) stretching mode of the alcohol molecules are also analyzed and found to be specific giving characterization of the amphoteric relation, being positive for the proton-acceptor and negative for the proton-donor molecule. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.