985 resultados para Histocompatibility Antigen
Resumo:
OBJECTIVES: Fever is one of the most commonly seen symptoms in the pediatric emergency department. The objective of this study was to observe how the rapid testing for influenza virus impacts on the management of children with fever. METHODS: We performed a review of our pediatric emergency department records during the 2008/2009 annual influenza season. The BinaxNow Influenza A+B test was performed on patients with the following criteria: age 1.0 to 16.0 years, fever greater than 38.5 °C, fever of less than 96 hours' duration after the onset of clinical illness, clinical signs compatible with acute influenza, and nontoxic appearance. Additional laboratory tests were performed at the treating physician's discretion. RESULTS: The influenza rapid antigen test was performed in 192 children. One hundred nine (57%) were influenza positive, with the largest fraction (101 patients) positive for influenza A. The age distribution did not differ between children with negative and positive test results (mean, 5.3 vs. 5.1 years, not statistically significant). A larger number of diagnostic tests were performed in the group of influenza-negative patients. Twice as many complete blood counts, C-reactive protein determinations, lumbar punctures, and urinalyses were ordered in the latter group. CONCLUSIONS: Rapid diagnosis of influenza in the pediatric emergency department affects the management of febrile children as the confirmation of influenza virus infection decreases additional diagnostic tests ordered.
Resumo:
Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.
Resumo:
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Resumo:
Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.
Resumo:
Serology is an important tool for the diagnosis of alveolar echinococcosis (AE) in humans. In order to improve serodiagnostic performance, we have developed an in vitro-produced Echinococcus mulilocularis metacestode vesicle fluid (EmVF) antigen for application in an immunoblot assay. Immunoblot analysis of EmVF revealed an abundant immunoreactive band triplet of 20-22 kDa, achieving a sensitivity of 100% based on the testing of sera from 62 pre-operative and pre-treatment cases of active and inactive AE. Thus, the EmVF-immunoblotting allowed the specific detection of cases seronegative by the Em2- and/or EmII/3-10-ELISA, usually attributable to abortive, inactive cases of AE. The specificity of the EmVF-immunoblotting did not allow discrimination between AE and cystic echinococcosis (CE) but was 100% with respect to non-Echinococcus parasitic infections or cancer malignancies. Based on the findings of this study, it is recommended that the current ELISA test combination (Em2- and II/3-10-ELISA) be complemented with EmVF-immunoblotting, allowing an improved diagnosis of both clinical and subclinical forms of AE, including those associated with E. multilocularis-specific antibody reactivities not detectable by ELISA.
Resumo:
We recently reported a complete change in the endothelial ABO histo-blood group phenotype of a cardiac allograft long term after B to O mismatched transplantation. In the context of the current controversy on graft recolonization with recipient endothelial cells and its importance in the development of immunological unresponsiveness, we monitored the expression of endothelial ABH histo-blood group antigens of 10 ABO-compatible, non-identical cardiac allografts over an observation period of at least 30 months. ABH antigens as well as markers for endothelial cells, erythrocytes and thrombocytes were investigated retrospectively by immunohistochemistry using monoclonal antibodies on sections of formalin-fixed, paraffin-embedded biopsies and were evaluated semi-quantitatively by microscopy. In contrast to our earlier finding of the change in the endothelial ABO histo-blood group phenotype long term after ABO- mismatched transplantation, we could not confirm this change in 10 compatible but non-identical cases.
Resumo:
In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.
Resumo:
Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.
Resumo:
There is a growing discussion surrounding the issue of personalized approaches to drug prescription based on an individual's genetic makeup. This field of investigation has focused primarily on identifying genetic factors that influence drug metabolism and cellular disposition, thereby contributing to dose-dependent toxicities and/or variable drug efficacy. However, pharmacogenetic approaches have also proved valuable in predicting drug hypersensitivity reactions in selected patient populations, including HIV-infected patients receiving long-term antiretroviral therapy. In this instance, susceptibility has been strongly linked to genetic loci involved in antigen recognition and presentation to the immune system--most notably within the major histocompatibility complex (MHC) region--consistent with the notion that hypersensitivity reactions represent drug-specific immune responses that are largely dose independent. Here the authors describe their experiences with the development of pharmacogenetic approaches to hypersensitivity reactions associated with abacavir and nevirapine, two commonly prescribed antiretroviral drugs. It is demonstrated that prospective screening tests to identify and exclude individuals with a certain genetic makeup may be largely successful in decreasing or eliminating incidence of these adverse drug reactions in certain populations. This review also explores the broader implications of these findings.
Prostate specific antigen expression does not necessarily correlate with prostate cancer cell growth
Resumo:
PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.
Resumo:
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent in humans the largest pool of tissue macrophages. To comply with their main task, i.e. the efficient removal of microbes and particulate matter that might have gained access to the mucosa from the intestinal lumen while maintaining local tissue homeostasis, several phenotypic and functional adaptations evolved. Most notably, microbe-associated molecular pattern (MAMP) receptors, including the lipopolysaccharide receptors CD14 and TLR4, but also the Fc receptors for IgA and IgG are absent on most intestinal Mø. Here we review recent findings on the phenotypic and functional adaptations of intestinal Mø and their implications for the pathogenesis of inflammatory bowel diseases.
Resumo:
BACKGROUND: The deletion of three adjacent nucleotides in an exon may cause the lack of a single amino acid, while the protein sequence remains otherwise unchanged. Only one such in-frame deletion is known in the two RH genes, represented by the RHCE allele ceBP expressing a "very weak e antigen." STUDY DESIGN AND METHODS: Blood donor samples were recognized because of discrepant results of D phenotyping. Six samples came from Switzerland and one from Northern Germany. The molecular structures were determined by genomic DNA nucleotide sequencing of RHD. RESULTS: Two different variant D antigens were explained by RHD alleles harboring one in-frame triplet deletion each. Both single-amino-acid deletions led to partial D phenotypes with weak D antigen expression. Because of their D category V-like phenotypes, the RHD(Arg229del) allele was dubbed DVL-1 and the RHD(Lys235del) allele DVL-2. These in-frame triplet deletions are located in GAGAA or GAAGA repeats of the RHD exon 5. CONCLUSION: Partial D may be caused by a single-amino-acid deletion in RhD. The altered RhD protein segments in DVL types are adjacent to the extracellular loop 4, which constitutes one of the most immunogenic parts of the D antigen. These RhD protein segments are also altered in all DV, which may explain the similarity in phenotype. At the nucleotide level, the triplet deletions may have resulted from replication slippage. A total of nine amino acid positions in an Rhesus protein may be affected by this mechanism.
Resumo:
BACKGROUND: The KEL2/KEL1 (k/K) blood group polymorphism represents 578C>T in the KEL gene and Thr193Met in the Kell glycoprotein. Anti-KEL1 can cause severe hemolytic disease of the fetus and newborn. Molecular genotyping for KEL*1 is routinely used for assessing whether a fetus is at risk. Red blood cells (RBCs) from a KEL:1 blood donor (D1) were found to have abnormal KEL1 expression during evaluation of anti-KEL1 reagents. STUDY DESIGN AND METHODS: Kell genotyping methods, including KEL exon 6 direct sequencing, were applied. KEL cDNA from D1 was sequenced. Flow cytometry was used to assess KEL1 and KEL2 RBC expression. RESULTS: RBCs from the donor, her mother, and an unrelated donor gave weak or negative reactions with some anti-KEL1 reagents. Other Kell-system antigens appeared normal. The three individuals were homozygous for KEL C578 (KEL*2) but heterozygous for a 577A>T transversion, encoding Ser193. They appeared to be KEL*2 homozygotes by routine genotyping methods. Flow cytometry revealed weak KEL1 expression and normal KEL2, similar to that of KEL*2 homozygotes. CONCLUSION: Ser193 in the Kell glycoprotein appears to result in expression of abnormal KEL1, in addition to KEL2. The mutation is not detected by routine Kell genotyping methods and, because of unpredicted KEL1 expression, could lead to a misdiagnosis.