934 resultados para Heterotrimeric GTP-Binding Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present clinicopathologic data on 10 pulmonary myxoid sarcomas, which are defined by distinctive histomorphologic features and characterized by a recurrent fusion gene, that appear to represent a distinct tumor entity at this site. The patients [7 female, 3 male; aged 27 to 67 y (mean, 45 y)] presented with local or systemic symptoms (n=5), symptoms from cerebral metastasis (1), or incidentally (2). Follow-up of 6 patients showed that 1 with brain metastasis died shortly after primary tumor resection, 1 developed a renal metastasis but is alive and well, and 4 are disease free after 1 to 15 years. All tumors involved pulmonary parenchyma, with a predominant endobronchial component in 8 and ranged from 1.5 to 4 cm. Microscopically, they were lobulated and composed of cords of polygonal, spindle, or stellate cells within myxoid stroma, morphologically reminiscent of extraskeletal myxoid chondrosarcoma. Four cases showed no or minimal atypia, 6 showed focal pleomorphism, and 5 had necrosis. Mitotic indices varied, with most tumors not exceeding 5/10 high-power fields. Tumors were immunoreactive for only vimentin and weakly focal for epithelial membrane antigen. Of 9 tumors, 7 were shown to harbor a specific EWSR1-CREB1 fusion by reverse transcription-polymerase chain reaction and direct sequencing, with 7 of 10 showing EWSR1 rearrangement by fluorescence in situ hybridization. This gene fusion has been described previously in 2 histologically and behaviorally different sarcomas: clear cell sarcoma-like tumors of the gastrointestinal tract and angiomatoid fibrous histiocytomas; however, this is a novel finding in tumors with the morphology we describe and that occur in the pulmonary region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunoglobulin production by myeloma plasma cells depends on the unfolded protein response for protein production and folding. Recent studies have highlighted the importance of IRE1alpha and X box binding protein 1 (XBP1), key members of this pathway, in normal B-plasma cell development. We have determined the gene expression levels of IRE1alpha, XBP1, XBP1UNSPLICED (XBP1u), and XBP1SPLICED (XBP1s) in a series of patients with myeloma and correlated findings with clinical outcome. We show that IRE1alpha and XBP1 are highly expressed and that patients with low XBP1s/u ratios have a significantly better overall survival. XBP1s is an independent prognostic marker and can be used with beta2 microglobulin and t(4;14) to identify a group of patients with a poor outcome. Furthermore, we show the beneficial therapeutic effects of thalidomide in patients with low XBP1s/u ratios. This study highlights the importance of XBP1 in myeloma and its significance as an independent prognostic marker and as a predictor of thalidomide response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bis-(3´-5´)-cyclic dimeric guanosine monophosphate, or cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that regulates processes such biofilm formation, motility, and virulence. C-di-GMP is synthesized by diguanylate cyclases (DGCs), while phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMPs by previously unidentified enzymes termed PDE-Bs. To identify the PDE-B responsible for pGpG turnover, a screen for pGpG binding proteins in a Vibrio cholerae open reading frame library was conducted to identify potential pGpG binding proteins. This screen led to identification of oligoribonuclease (Orn). Purified Orn binds to pGpG and can cleave pGpG to GMP in vitro. A deletion mutant of orn in Pseudomonas aeruginosa was highly defective in pGpG turnover and accumulated pGpG. Deletion of orn also resulted in accumulation c-di-GMP, likely through pGpG-mediated inhibition of the PDE-As, causing an increase in c-di-GMP-governed auto-aggregation and biofilm. Thus, we found that Orn serves as the primary PDE-B enzyme in P. aeruginosa that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. However, not all bacteria that utilize c-di-GMP signaling also have an ortholog of orn, suggesting that other PDE-Bs must be present. Therefore, we asked whether RNases that cleave small oligoribonucleotides in other species could also act as PDE-Bs. NrnA, NrnB, and NrnC can rapidly degrade pGpG to GMP. Furthermore, they can reduce the elevated aggregation and biofilm formation in P. aeruginosa ∆orn. Together, these results indicate that rather than having a single dedicated PDE-B, different bacteria utilize distinct RNases to cleave pGpG and complete c-di-GMP signaling. The ∆orn strain also has a growth defect, indicating changes in other regulatory processes that could be due to pGpG accumulation, c-di-GMP accumulation, or another effect due to loss of Orn. We sought to investigate the genetic pathways responsible for these growth defect phenotypes by use of a transposon suppressor screen, and also investigated transcriptional changes using RNA-Seq. This work identifies that c-di-GMP degradation intersects with RNA degradation at the point of the Orn and the functionally related RNases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitin-binding vicilins from legume seeds (Erythrina velutina. Canavalia ensiformes and Phaseolus vulgares) were isolated by ammonium sulfate followed by affinity chromatography on a chitin column. Effect of these vicilins on female adults of Ceratitis capitata was examined by bioassay and in a semi-field assay model. Mechanism of action of the vicilins was determined by in vivo digestibility and chitin affinity. Among the tested vicilins, E. velutina when added to diet caused strong effect on mortality at 10% dose. This insecticidal property was tested in a semi-field assay which showed the same effect observed in laboratory conditions, where doses of 10% and 15% were lethal to female adults of C. capitata. These deleterious effects were not only associated to the binding to chitin structures present in peritrophic membrane, but principally to its low digestibility in the C. capitata digestive tract. This fact was confirmed because chiting binding proteins as WGA and the other tested vicilins were not toxic to female adults of C. capitata due susceptibility of these proteins to digestive enzymes of the insects. By other side EvV was more resistant to digestive enzymes, causing deleterious effects on female adults of C. capitata. These results showed that EvV may be part of the pest management programs or an alternative in plant improvement program in the population control of this fruticulture pest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Patologia Molecular, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La localisation des ARNm au niveau des microtubules et des centrosomes laisse voir le centrosome et le fuseau mitotique comme des complexes ribonucléoprotéiques. Cependant, le mécanisme de localisation des ARNm à ces différentes structures ainsi que leurs fonctions dans la régulation de la mitose restent encore incompris. L’objectif était ici de caractériser des protéines de liaison à l’ARN (RNA Binding Proteins, RBPs) fonctionnellement impliquées dans la localisation des ARNm mitotiques chez la Drosophile et d’évaluer la conservation de la fonction de ces RBPs dans les cellules humaines. La déplétion de RBPs par RNAi générée dans des Drosophiles mutantes résulte en des phénotypes distincts de localisation anormale de l’ARNm centrosomique cen et en des défauts mitotiques différents selon le RBP ciblé, suggérant des fonctions différentes de ces RBPs. De plus, dans les jeunes embryons, les RBPs Bru-2 et Mask semblent être fonctionnellement importants pour la mitose via la régulation de l’ARNm cen, donnant un aperçu de la possible fonction mitotique de RBPs dans la régulation d’un ARN centrosomique. De plus, il a été observé dans un criblage d’immunofluorescence dans des cellules HeLa en métaphase que HNRNPUL1 colocalise au fuseau et aux centrosomes. HNRNPUL1 pourrait être impliqué dans la régulation de l’ARNm CDR2 (orthologue de cen) puisque la déplétion de l’orthologue de HNRNPUL1 dans la Drosophile, CG30122, résulte en une localisation anormale de l’ARNm centrosomique cen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La localisation des ARNm au niveau des microtubules et des centrosomes laisse voir le centrosome et le fuseau mitotique comme des complexes ribonucléoprotéiques. Cependant, le mécanisme de localisation des ARNm à ces différentes structures ainsi que leurs fonctions dans la régulation de la mitose restent encore incompris. L’objectif était ici de caractériser des protéines de liaison à l’ARN (RNA Binding Proteins, RBPs) fonctionnellement impliquées dans la localisation des ARNm mitotiques chez la Drosophile et d’évaluer la conservation de la fonction de ces RBPs dans les cellules humaines. La déplétion de RBPs par RNAi générée dans des Drosophiles mutantes résulte en des phénotypes distincts de localisation anormale de l’ARNm centrosomique cen et en des défauts mitotiques différents selon le RBP ciblé, suggérant des fonctions différentes de ces RBPs. De plus, dans les jeunes embryons, les RBPs Bru-2 et Mask semblent être fonctionnellement importants pour la mitose via la régulation de l’ARNm cen, donnant un aperçu de la possible fonction mitotique de RBPs dans la régulation d’un ARN centrosomique. De plus, il a été observé dans un criblage d’immunofluorescence dans des cellules HeLa en métaphase que HNRNPUL1 colocalise au fuseau et aux centrosomes. HNRNPUL1 pourrait être impliqué dans la régulation de l’ARNm CDR2 (orthologue de cen) puisque la déplétion de l’orthologue de HNRNPUL1 dans la Drosophile, CG30122, résulte en une localisation anormale de l’ARNm centrosomique cen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. The aim of this work was to study the effects of adjuvant-induced arthritis on GH and insulin-like growth factor-I (IGF-I). Arthritis was induced by an intradermal injection of complete Freund's adjuvant and rats were killed 18 and 22 days later. IGF-I and GH levels were measured by radioimmunoassay. Pituitary GH mRNA was analyzed by northern blot and IGF binding proteins (IGFBPs) by western blot. Arthritic rats showed a decrease in both serum and hepatic concentrations of IGF-I. On the contrary, arthritis increased the circulating IGFBPs. The serum concentration of IGF-I in the arthritic rats was negatively correlated with the body weight loss observed in these animals. Arthritis decreased the serum concentration of GH and this decrease seems to be due to an inhibition of GH synthesis, since pituitary GH mRNA content was decreased in arthritic rats (p<0.01). These data suggest that the decrease in body weight gain in arthritic rats may be, at least in part, secondary to the decrease in GH and IGF-I secretion. Furthermore, the increased serum IGFBPs may also be involved in the disease process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La chromatine eucaryote, contenant l’ADN et de nombreuses protéines de liaison, subit une compaction dynamique et fonctionnelle à de multiples échelles, nécessaire pour la régulation de nombreux processus biologiques comme l’expression génique. Afin de définir et maintenir les fonctions cellulaires, les protéines de la régulation transcriptionnelle et de la régulation de la structure chromatinienne agissent de concert pour orchestrer les programmes d’expression génique des cellules. Les facteurs de transcription opèrent de manière combinée et hiérarchique au niveau de nombreux éléments régulateurs, dont le fonctionnement est complexe et intégré, capables de générer de larges boucles topologiques pour réguler spécifiquement un promoteur cible à un moment précis. Le co-activateur transcriptionnel Mediator sert de centre d’interprétation, en connectant physiquement les régulateurs de la transcription à la machinerie transcriptionnelle, pour générer une réponse calibrée. Le complexe de maintenance de la structure des chromosomes, Cohesin, est impliqué dans la formation et la stabilisation des connexions génomiques à l’échelle de nombreuses structures chromatiniennes tri-dimensionnelles dont la caractérisation fonctionnelle commence à être explorée. Ensemble, les facteurs de transcription, Mediator et Cohesin contrôlent l’expression des programmes responsables du maintien de l’identité cellulaire. Les cellules cancéreuses présentent de nombreuses dérégulations au niveau transcriptionnel, et donc un programme d’expression aberrant. Nous avons démontré que les mécanismes de régulation qui contrôlent les cellules cancéreuses sont conservés, et proposons une stratégie qui permette de révéler les facteurs clefs dans la progression tumorale. Nous avons appliqué cette stratégie à la problématique de la résistance endocrinienne dans la progression du cancer du sein hormono-dépendant. Les résultats obtenus suggèrent que le complexe transcriptionnel AP-1 pourrait être impliqué dans l’acquisition et/ou le maintien de la résistance, en réponse aux pressions de sélection induites par les traitements hormonaux. Nous proposons une adaptation progressive et agressive des cellules cancéreuses par re-hiérarchisation des facteurs clefs qui contrôlent sa croissance.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.