979 resultados para Heterometrus xanthopus venom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific inhibition of platelet function is a major target of anti-thrombotic drug research. Platelet receptors are both accessible and specific but have multiple functions often linked to a wide range of ligands. GPIb complex is best known as a major platelet receptor for von Willebrand factor essential for platelet adhesion under high shear conditions found in arteries and in thrombosis. Recent animal studies have supported inhibition of GPIb as a good candidate for anti-thrombotic drug development with several classes of proteins showing important specific effects and the required discrimination between roles in haemostasis and thrombosis is important to protect against bleeding complications. These include antibodies, several classes of snake venom proteins, mutant thrombin molecules and peptides affecting subunit interactions. However, due to the nature of its receptor-ligand interactions involving large protein-protein interfaces, the possibility of developing classic pharmaceutical inhibitors for long term (and perhaps oral) treatment is still unclear, and additional information about structural interactions and signalling mechanisms is essential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With over 43,000 species, spiders are the largest predacious arthropod group. They have developed key characteristics such as multi-purpose silk types, venoms consisting of hundreds of components, locomotion driven by muscles and hydraulic pressure, a highly evolved key-lock mechanism between the complex genital structures, and many more unique features. After 300 million years of evolutionary refinement, spiders are present in all land habitats and represent one of the most successful groups of terrestrial organisms. Ecophysiology combines functional and evolutionary aspects of morphology, physiology, biochemistry and molecular biology with ecology. Cutting-edge science in spiders focuses on the circulatory and respiratory system, locomotion and dispersal abilities, the immune system, endosymbionts and pathogens, chemical communication, gland secretions, venom components, silk structure, structure and perception of colours as well as nutritional requirements. Spiders are valuable indicator species in agroecosystems and for conservation biology. Modern transfer and application technologies research spiders and their products with respect to their value for biomimetics, material sciences, and the agrochemical and pharmaceutical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiders have one pair of venom glands, and only a few families have reduced them completely (Uloboridae, Holarchaeidae) or modified them to another function (Symphytognathidae or Scytodidae, see Suter and Stratton 2013). All other 42,000 known spider species (99%) utilize their venom to inject it into prey items, which subsequently become paralysed or are killed. Spider venom is a complex mixture of hundreds of components, many of them interacting with cell membranes or receptors located mainly in the nervous or muscular system (Herzig and King 2013). Spider venom, as it is today, has a 300-million-yearlong history of evolution and adaptation and can be considered as an optimized tool to subdue prey. In Mesothelae, the oldest spider group with less than 100 species, the venom glands lie in the anterior part of the cheliceral basal segment. They are very small and do not support the predation process very effectively. In Mygalomorphae, the venom glands are well developed and fill the basal cheliceral segment more or less completely. Many of these 3,000 species are medium- to large-/very large-sized spiders, and they have created the image of being dangerous beasts, attacking and killing a variety of animals, including humans. Although this picture is completely wrong, it is persistent and contributes considerably to human arachnophobia. The third group of spiders, Araneomorphae or “modern spiders”, comprises 93% of all spider species. The venom glands are enlarged and extend to the prosoma; the openings of the venom ducts are moved from the convex to the concave side of the cheliceral fangs and enlarged as well. These changes save the chelicerae from the necessity of being large, and hence, on the average, araneomorph spiders are much smaller than mygalomorphs. Nevertheless, they possess relatively large venom glands, situated mainly in the prosoma, and may also have rather potent venom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA analogue tricyclo-DNA, built from conformationally rigid nucleoside analogues that were linked via tertiary phosphodiester functions, can efficiently be synthesized from the corresponding phosphoramidites by conventional solid-phase cyanoethyl phosphoramidite chemistry. 5'-End phosphorylated tricyclo-DNA sequences are chemically stable in aqueous, pH-neutral media at temperatures from 0 to 90 C. Tricyclo-DNA sequences resist enzymatic hydrolysis by the 3'-exonuclease snake venom phosphodiesterase. Homobasic adenine- and thymine-containing tricyclo-DNA octa- and nonamers are extraordinarily stable A-T base-pairing systems, not only in their own series but also with complementary DNA and RNA. Base mismatch formation is strongly destabilized. As in bicyclo-DNA, the tricyclo-DNA purine sequences preferentially accept a complementary strand on the Hoogsteen face of the base. A thermodynamic analysis reveals entropic benefits in the case of hetero-backbone duplex formation (tricyclo-DNA/DNA duplexes) and both an enthalpic and entropic benefit for duplex formation in the pure tricyclo-DNA series compared to natural DNA. Stability of tricyclo-DNA duplex formation depends more strongly on monovalent salt concentration compared to natural DNA. Homopyrimidine DNA sequences containing tricyclothymidine residues form triplexes with complementary double-stranded DNA. Triple-helix stability depends on the sequence composition and can be higher when compared to that of natural DNA. The use of one tricyclothymidine residue in the center of the self-complementary dodecamer duplex (d(CGCGAAT t CGCG), t = tricyclothymidine) strongly stabilizes its monomolecular hairpin loop structure relative to that of the corresponding pure DNA dodecamer ( T m = +20 C), indicating (tetra)loop-stabilizing properties of this rigid nucleoside analogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

10.1002/hlca.19950780816.abs A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D-ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D-(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D-bicyclodeoxynucleoside derivatives 1-7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D-bicyclothymidine and α-D-bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D)efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasitoid Chelonus inanitus (Braconidae, Hymenoptera) oviposits into eggs of Spodoptera littoralis (Noctuidae, Lepidoptera) and, along with the egg, also injects polydnaviruses and venom, which are prerequisites for successful parasitoid development. The parasitoid larva develops within the embryonic and larval stages of the host, which enters metamorphosis precociously and arrests development in the prepupal stage. Polydnaviruses are responsible for the developmental arrest and interfere with the host's endocrine system in the last larval instar. Polydnaviruses have a segmented genome and are transmitted as a provirus integrated in the wasp's genome. Virions are only formed in female wasps and no virus replication is seen in the parasitized host. Here it is shown that very small amounts of viral transcripts were found in parasitized eggs and early larval instars of S. littoralis. Later on, transcript quantities increased and were highest in the late last larval instar for two of the three viral segments tested and in the penultimate to early last larval instar for the third segment. These are the first data on the occurrence of viral transcripts in the host of an egg-larval parasitoid and they are different from data reported for hosts of larval parasitoids, where transcript levels are already high shortly after parasitization. The analysis of three open reading frames by RT-PCR revealed viral transcripts in parasitized S. littoralis and in female pupae of C. inanitus, indicating the absence of host specificity. For one open reading frame, transcripts were also seen in male pupae, suggesting transcription from integrated viral DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basophil activation test (BAT) has become a pervasive test for allergic response through the development of flow cytometry, discovery of activation markers such as CD63 and unique markers identifying basophil granulocytes. Basophil activation test measures basophil response to allergen cross-linking IgE on between 150 and 2000 basophil granulocytes in <0.1 ml fresh blood. Dichotomous activation is assessed as the fraction of reacting basophils. In addition to clinical history, skin prick test, and specific IgE determination, BAT can be a part of the diagnostic evaluation of patients with food-, insect venom-, and drug allergy and chronic urticaria. It may be helpful in determining the clinically relevant allergen. Basophil sensitivity may be used to monitor patients on allergen immunotherapy, anti-IgE treatment or in the natural resolution of allergy. Basophil activation test may use fewer resources and be more reproducible than challenge testing. As it is less stressful for the patient and avoids severe allergic reactions, BAT ought to precede challenge testing. An important next step is to standardize BAT and make it available in diagnostic laboratories. The nature of basophil activation as an ex vivo challenge makes it a multifaceted and promising tool for the allergist. In this EAACI task force position paper, we provide an overview of the practical and technical details as well as the clinical utility of BAT in diagnosis and management of allergic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 replication is inhibited by the incorporation of chain-terminating nucleotides at the 3′ end of the growing DNA chain. Here we show a nucleotide-dependent reaction catalyzed by HIV-1 reverse transcriptase that can efficiently remove the chain-terminating residue, yielding an extendible primer terminus. Radioactively labeled 3′-terminal residue from the primer can be transferred into a product that is resistant to calf intestinal alkaline phosphatase and sensitive to cleavage by snake venom phosphodiesterase. The products formed from different nucleotide substrates have unique electrophoretic migrations and have been identified as dinucleoside tri- or tetraphosphates. The reaction is inhibited by dNTPs that are complementary to the next position on the template (Ki ≈ 5 μM), suggesting competition between dinucleoside polyphosphate synthesis and DNA polymerization. Dinucleoside polyphosphate synthesis was inhibited by an HIV-1 specific non-nucleoside inhibitor and was absent in mutant HIV-1 reverse transcriptase deficient in polymerase activity, indicating that this activity requires a functional polymerase active site. We suggest that dinucleoside polyphosphate synthesis occurs by transfer of the 3′ nucleotide from the primer to the pyrophosphate moiety in the nucleoside di- or triphosphate substrate through a mechanism analogous to pyrophosphorolysis. Unlike pyrophosphorolysis, however, the reaction is nucleotide-dependent, is resistant to pyrophosphatase, and produces dinucleoside polyphosphates. Because it occurs at physiological concentrations of ribonucleoside triphosphates, this reaction may determine the in vivo activity of many nucleoside antiretroviral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The γ-carboxyglutamic acid (Gla) domain of blood coagulation factors is responsible for Ca2+-dependent phospholipid membrane binding. Factor X-binding protein (X-bp), an anticoagulant protein from snake venom, specifically binds to the Gla domain of factor X. The crystal structure of X-bp in complex with the Gla domain peptide of factor X at 2.3-Å resolution showed that the anticoagulation is based on the fact that two patches of the Gla domain essential for membrane binding are buried in the complex formation. The Gla domain thus is expected to be a new target of anticoagulant drugs, and X-bp provides a basis for designing them. This structure also provides a membrane-bound model of factor X.