918 resultados para Hepatocytes morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African trypanosomes, the causative agent of Human African Trypanosomiasis (HAT) are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The mitochondrial outer membrane (MOM) of T. brucei is essentially unchartered territory. The beta barrel membrane proteins VDAC, Sam50 and archaic TOM are the only MOM proteins that have been characterized so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to raise the protein inventory of the MOM. Of the 82 candidate proteins two-thirds have never been associated with mitochondria before. The function of 42 proteins remains unknown. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three MOM candidate proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes residing in the MOM orchestrate protein and tRNA import, metabolite exchange and lipid metabolism. African trypanosomes are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The MOM of T. brucei is essentially unchartered territory. It lacks a canonical TOM-complex and proteins are imported across the MOM using ATOM, which is related to both Tom40 and to the bacterial Omp85-protein family. The beta barrel membrane proteins ATOM, VDAC and Sam50 are the only MOM proteins that have been characterized in T. brucei so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence Two-thirds of these polypeptides have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. OBJECTIVE To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. DATA SOURCES Literature was searched using PubMed (1948-2012), EMBASE (1980-2012), Scopus (2004-2012), Web of Science (1945-2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. STUDY SELECTION We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. DATA EXTRACTION Independent extraction of data and quality assessments were performed by two observers. RESULTS Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. CONCLUSION Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research is warranted to elucidate it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE For dental implant treatment planning and placement, a precise anatomic description of the nasopalatine canal (NC) is necessary. This descriptive retrospective study evaluated dimensions of the NC and buccal bone plate (BBP) and the tridimensional association of the anatomic variants of NC, using cone-beam computed tomography (CBCT). METHODS This study included 230 CBCTs. Sagittal slices were used for measurements of the NC and BBP and to evaluate shape and direction-course of the NC. Coronal slices were used to assess NC shape and axial slices to assess number of incisive foramina and foramina of Stenson. RESULTS Mean NC length was 12.34 ± 2.79 mm, statistically significant differences were detected between genders (p < 0.001). Mean BBP length was 20.87 ± 3.68 mm, statistically significant differences were found for the dental status (p < 0.001) and mean BBP width was 6.83 ± 1.28 mm, significant differences were detected between genders (p < 0.001). Mean nasopalatine angle was 73.33° ± 8.11°, significant differences were found in sagittal and coronal classifications. The most prevalent canal was: cylindrical sagittal shape (48.2 %); slanted-straight direction-course (57.6 %); Ya-type coronal shape (42.4 %); and one foramen incisive with two Stenson's foramina (1-2) (50.9 %). Sagittal shape was associated with sagittal direction-course (p < 0.001). Coronal shape was associated with axial classification (p < 0.001). CONCLUSIONS The NC anatomy is highly variable. Gender is related to the NC length and BBP width, while dental status is related to BBP length. There was an association between the different sagittal classifications of the NC and between the coronal shape and axial classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Congenital afibrinogenemia is a rare inherited autosomal recessive disorder in which a mutation in one of three genes coding for the fibrinogen polypeptide chains Aα, Bβ and γ results in the absence of a functional coagulation protein. A patient with congenital afibrinogenemia, resulting from an FGA homozygous gene deletion, underwent an orthotopic liver transplant that resulted in complete restoration of normal hemostasis. The patient's explanted liver provided a unique opportunity to further investigate a potential novel treatment modality. OBJECTIVE: To explore a targeted gene therapy approach for patients with congenital afibrinogenemia. METHODS AND RESULTS: At the time of transplant, the patient's FGA-deficient hepatocytes were isolated and transduced with lentiviral vectors encoding the human fibrinogen Aα-chain. FGA-transduced hepatocytes produced fully functional fibrinogen in vitro. CONCLUSIONS: Orthotopic liver transplantation is a possible rescue treatment for failure of on-demand fibrinogen replacement therapy. In addition, we provide evidence that hepatocytes homozygous for a large FGA deletion can be genetically modified to restore Aα-chain protein expression and secrete a functional fibrinogen hexamer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Finding the right balance between tibial coverage and minimal implant overhang is an important factor in TKA. Another significant cause of failure is component malrotation. METHODS An average master shape of the proximal tibia at TKA resection level was calculated using fine slice computed tomographies of 117 cadaveric knees. To find out whether alternate implant contours would be necessary depending on the patient's body size, we established five subgroups to compare. CAD-Analysis was performed to simulate the overhang produced after ±4°/±7°/±10° rotation. RESULTS A master shape for the tibial resection cut (with a 5° posterior slope, 7 mm under lateral joint line) could be determined. Neither left vs. right knee joint, nor male vs. female nor the size subdivision appears to alter the calculated master shape significantly. The optimized shape allowing for ±4° of rotational freedom was found to be the best variant. CONCLUSIONS Valid methods have been obtained to design a two-dimensional average shape of the tibial plateau. The modifications described in this study might come in useful, when designing future implant designs. CLINICAL RELEVANCE An optimized fit at the tibial plateau and lower rates of component malrotation may result in better outcomes after TKA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.