995 resultados para Heavy particles (Nuclear physics)
Resumo:
The Duke Free-electron laser (FEL) system, driven by the Duke electron storage ring, has been at the forefront of developing new light source capabilities over the past two decades. In 1999, the Duke FEL demonstrated the first lasing of a storage ring FEL in the vacuum ultraviolet (VUV) region at $194$ nm using two planar OK-4 undulators. With two helical undulators added to the outboard sides of the planar undulators, in 2005 the highest FEL gain ($47.8\%$) of a storage ring FEL was achieved using the Duke FEL system with a four-undulator configuration. In addition, the Duke FEL has been used as the photon source to drive the High Intensity $\gamma$-ray Source (HIGS) via Compton scattering of the FEL beam and electron beam inside the FEL cavity. Taking advantage of FEL's wavelength tunability as well as the adjustability of the energy of the electron beam in the storage ring, the nearly monochromatic $\gamma$-ray beam has been produced in a wide energy range from $1$ to $100$ MeV at the HIGS. To further push the FEL short wavelength limit and enhance the FEL gain in the VUV regime for high energy $\gamma$-ray production, two additional helical undulators were installed in 2012 using an undulator switchyard system to allow switching between the two planar and two helical undulators in the middle section of the FEL system. Using different undulator configurations made possible by the switchyard, a number of novel capabilities of the storage ring FEL have been developed and exploited for a wide FEL wavelength range from infrared (IR) to VUV. These new capabilities will eventually be made available to the $\gamma$-ray operation, which will greatly enhance the $\gamma$-ray user research program, creating new opportunities for certain types of nuclear physics research.
With the wide wavelength tuning range, the FEL is an intrinsically well-suited device to produce lasing with multiple colors. Taking advantage of the availability of an undulator system with multiple undulators, we have demonstrated the first two-color lasing of a storage ring FEL. Using either a three- or four-undulator configuration with a pair of dual-band high reflectivity mirrors, we have achieved simultaneous lasing in the IR and UV spectral regions. With the low-gain feature of the storage ring FEL, the power generated at the two wavelengths can be equally built up and precisely balanced to reach FEL saturation. A systematic experimental program to characterize this two-color FEL has been carried out, including precise power control, a study of the power stability of two-color lasing, wavelength tuning, and the impact of the FEL mirror degradation. Using this two-color laser, we have started to develop a new two-color $\gamma$-ray beam for scientific research at the HIGS.
Using the undulator switchyard, four helical undulators installed in the beamline can be configured to not only enhance the FEL gain in the VUV regime, but also allow for the full polarization control of the FEL beams. For the accelerator operation, the use of helical undulators is essential to extend the FEL mirror lifetime by reducing radiation damage from harmonic undulator radiation. Using a pair of helical undulators with opposite helicities, we have realized (1) fast helicity switching between left- and right-circular polarizations, and (2) the generation of fully controllable linear polarization. In order to extend these new capabilities of polarization control to the $\gamma$-ray operation in a wide energy range at the HIGS, a set of FEL polarization diagnostic systems need to be developed to cover the entire FEL wavelength range. The preliminary development of the polarization diagnostics for the wavelength range from IR to UV has been carried out.
Resumo:
Laser-target interaction represents a very promising field for several potential applications,
from the nuclear physics to the radiobiology. However optically accelerated particle beams are
characterized by some extreme features, not suitable for many applications. Therefore, beyond
the improvements at the laser-target interaction level, many researchers are spending their efforts
for the development of specific beam transport devices in order to obtain controlled and
reproducible output beams.In this background, the ELIMED (ELI-Beamlines MEDical applications)
project was born. Within 2017, a dedicated transport beam-line coupled with dosimetric
systems, named ELIMED, will be installed at the Extreme Light Infrastructure Beamlines
(ELI-Beamlines) facility in Prague (CZ),as a part of the ELIMAIA (ELI Multidisciplinary Applications
of laserâA ¸SIon Acceleration) beamline
Resumo:
The outer-crust structure and composition of a cold, non-accreting magnetar are studied. We model the outer crust to be made of fully equilibrated matter where ionized nuclei form a Coulomb crystal embedded in an electron gas. The main effects of the strong magnetic field are those of quantizing the electron motion in Landau levels and of modifying the nuclear single-particle levels producing, on average, an increased binding of nucleons in nuclei present in the Coulomb lattice. The effect of a homogeneous and constant magnetic field on nuclear masses has been predicted by using a covariant density functional in which induced currents and axial deformation due to the presence of a magnetic field that breaks time-reversal symmetry have been included self-consistently in the nucleon and meson equations of motion. Although not yet observed, for Ba 1016 G both effects contribute to produce different compositions - odd-mass nuclei are frequently predicted - and to increase the neutron-drip pressure as compared to a typical neutron star. Specifically, in such a regime, the magnetic-field effects on nuclei favor the appearance of heavier nuclei at low pressures. As B increases, such heavier nuclei are also preferred up to larger pressures. For the most extreme magnetic field considered, B=1018 G, and for the models studied, almost the whole outer crust is made of 4092Zr52.
Resumo:
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a 10 circle plus 120 circle plus (126) over bar representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by 74 symmetries, with suitable n, and one case is generated by a Z(2) x Z(2) symmetry. A numerical analysis of the 14 cases reveals that only two of them-dubbed A and B in the present paper allow good fits to the experimentally known fermion masses and mixings. (C) 2016 The Authors. Published by Elsevier B.V.
Resumo:
We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
We present solutions of the Yang–Mills equation on cylinders R×G/HR×G/H over coset spaces of odd dimension 2m+12m+1 with Sasakian structure. The gauge potential is assumed to be SU(m)SU(m)-equivariant, parameterized by two real, scalar-valued functions. Yang–Mills theory with torsion in this setup reduces to the Newtonian mechanics of a point particle moving in R2R2 under the influence of an inverted potential. We analyze the critical points of this potential and present an analytic as well as several numerical finite-action solutions. Apart from the Yang–Mills solutions that constitute SU(m)SU(m)-equivariant instanton configurations, we construct periodic sphaleron solutions on S1×G/HS1×G/H and dyon solutions on iR×G/HiR×G/H.
Resumo:
The Hermitian Yang–Mills equations on certain vector bundles over Calabi–Yau cones can be reduced to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with a unique gauge transformation, to the holomorphicity condition alone.
Resumo:
We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi–Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a ‘configuration matrix’, a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi–Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi–Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.
Resumo:
Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.
Resumo:
We review the scaling properties of few-body observables near the critical conditions for binding, with particular attention to light exotic nuclei, molecules and ultracold atoms.
Resumo:
Using a peculiar version of the SU(3)(L) circle times U(1)(N) electroweak model, we investigate the production of doubly charged Higgs boson at the Large Hadron Collider. Our results include branching ratio calculations for the doubly charged Higgs and for one of the neutral scalar bosons of the model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
SCOPUS: ar.j
Resumo:
International audience