993 resultados para Heat engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max). Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, ºC), by the heat storage rate (HSR, cal/min) or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET) during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature (ºC), with three environmental temperatures being studied: cold (18ºC), thermoneutral (23.1ºC) or hot (29.4ºC). Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min) until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment), with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydration is recommended in order to decrease the overload on the cardiovascular system when healthy individuals exercise, mainly in the heat. To date, no criteria have been established for hydration for hypertensive (HY) individuals during exercise in a hot environment. Eight male HY volunteers without another medical problem and 8 normal (NO) subjects (46 ± 3 and 48 ± 1 years; 78.8 ± 2.5 and 79.5 ± 2.8 kg; 171 ± 2 and 167 ± 1 cm; body mass index = 26.8 ± 0.7 and 28.5 ± 0.6 kg/m²; resting systolic (SBP) = 142.5 and 112.5 mmHg and diastolic blood pressure (DBP) = 97.5 and 78.1 mmHg, respectively) exercised for 60 min on a cycle ergometer (40% of VO2peak) with (500 ml 2 h before and 115 ml every 15 min throughout exercise) or without water ingestion, in a hot humid environment (30ºC and 85% humidity). Rectal (Tre) and skin (Tsk) temperatures, heart rate (HR), SBP, DBP, double product (DP), urinary volume (Vu), urine specific gravity (Gu), plasma osmolality (Posm), sweat rate (S R), and hydration level were measured. Data were analyzed using ANOVA in a split plot design, followed by the Newman-Keuls test. There were no differences in Vu, Posm, Gu and S R responses between HY and NO during heat exercise with or without water ingestion but there was a gradual increase in HR (59 and 51%), SBP (18 and 28%), DP (80 and 95%), Tre (1.4 and 1.3%), and Tsk (6 and 3%) in HY and NO, respectively. HY had higher HR (10%), SBP (21%), DBP (20%), DP (34%), and Tsk (1%) than NO during both experimental situations. The exercise-related differences in SBP, DP and Tsk between HY and NO were increased by water ingestion (P < 0.05). The results showed that cardiac work and Tsk during exercise were higher in HY than in NO and the difference between the two groups increased even further with water ingestion. It was concluded that hydration protocol recommended for NO during exercise could induce an abnormal cardiac and thermoregulatory responses for HY individuals without drug therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serologic assay is an important tool in the diagnosis of leishmaniasis. One of the most commonly used tests is enzyme-linked immunosorbent assay (ELISA). Since total Leishmania promastigotes are used as antigen in the routine assay, false-positive reactions are frequent due to cross-reaction with sera from other diseases, mainly Chagas' disease. Therefore, an antigen that determines less cross-reactivity has been pursued for the serodiagnosis of leishmaniasis. In the present study we analyzed the use of recombinant Leishmania infantum heat shock protein (Hsp) 83 in ELISA for the serodiagnosis of cutaneous (N = 12) and mucocutaneous leishmaniasis (N = 14) and we observed the presence of anti-L. infantum Hsp 83 antibodies in all samples as well as anti-Leishmania total antigen antibodies. When cross-reactivity was tested, chronic Chagas' disease patients (N = 10) did not show any reactivity. Therefore, we consider this L. infantum Hsp 83 to be a good antigen for routine use for serodiagnosis of tegumentary leishmaniasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gases emitted from energy production and transportation are dramatically changing the climate of Planet Earth. As a consequence, global warming is affecting the living conditions of numerous plant and animal species, including ours. Thus the development of sustainable and renewable liquid fuels is an essential global challenge in order to combat the climate change. In the past decades many technologies have been developed as alternatives to currently used petroleum fuels, such as bioethanol and biodiesel. However, even with gradually increasing production, the market penetration of these first generation biofuels is still relatively small compared to fossil fuels. Researchers have long ago realized that there is a need for advanced biofuels with improved physical and chemical properties compared to bioethanol and with biomass raw materials not competing with food production. Several target molecules have been identified as potential fuel candidates, such as alkanes, fatty acids, long carbon‐chain alcohols and isoprenoids. The current study focuses on the biosynthesis of butanol and propane as possible biofuels. The scope of this research was to investigate novel heterologous metabolic pathways and to identify bottlenecks for alcohol and alkane generation using Escherichia coli as a model host microorganism. The first theme of the work studied the pathways generating butyraldehyde, the common denominator for butanol and propane biosynthesis. Two ways of generating butyraldehyde were described, one via the bacterial fatty acid elongation machinery and the other via partial overexpression of the acetone‐butanol‐ethanol fermentation pathway found in Clostridium acetobutylicum. The second theme of the experimental work studied the reduction of butyraldehyde to butanol catalysed by various bacterial aldehyde‐reductase enzymes, whereas the final part of the work investigated the in vivo kinetics of the cyanobacterial aldehyde deformylating oxygenase (ADO) for the generation of hydrocarbons. The results showed that the novel butanol pathway, based on fatty acid biosynthesis consisting of an acyl‐ACP thioesterase and a carboxylic acid reductase, is tolerant to oxygen, thus being an efficient alternative to the previous Clostridial pathways. It was also shown that butanol can be produced from acetyl‐CoA using acetoacetyl CoA synthase (NphT7) or acetyl‐CoA acetyltransferase (AtoB) enzymes. The study also demonstrated, for the first time, that bacterial biosynthesis of propane is possible. The efficiency of the system is clearly limited by the poor kinetic properties of the ADO enzyme, and for proper function in vivo, the catalytic machinery requires a coupled electron relay system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work addresses the problem of building a mathematical model for the given system of heat exchangers and to determine the temperatures, pressures and velocities at the intermediate positions. Such model could be used in nding an optimal design for such a superstructure. To limit the size and computing time a reduced network model was used. The method can be generalized to larger network structures. A mathematical model which includes a system of non-linear equations has been built and solved according to the Newton-Raphson algorithm. The results obtained by the proposed mathematical model were compared with the results obtained by the Paterson approximation and Chen's Approximation. Results of this research work in collaboration with a current ongoing research at the department will optimize the valve positions and hence, minimize the pumping cost and maximize the heat transfer of the system of heat exchangers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of sweat composition and acidity on sweating rate (SR) suggests that the lower SR in children compared to adults may be accompanied by a higher level of sweat lactate (Lac-) and ammonia (NH3) and a lower sweat pH. Four groups (15 girls, 18 boys, 8 women, 8 men) cycled in the heat (42ºC, 20% relative humidity) at 50% VO2max for two 20-min bouts with a 10-min rest before bout 1 and between bouts. Sweat was collected into plastic bags attached to the subject's lower back. During bout 1, sweat from girls and boys had higher Lac- concentrations (23.6 ± 1.2 and 21.2 ± 1.7 mM; P < 0.05) than sweat from women and men (18.2 ± 1.9 and 14.8 ± 1.6 mM, respectively), but Lac- was weakly associated with SR (P > 0.05; r = -0.27). Sweat Lac- concentration dropped during exercise bout 2, reaching similar levels among all groups (overall mean = 13.7 ± 0.4 mM). Children had a higher sweat NH3 than adults during bout 1 (girls = 4.2 ± 0.4, boys = 4.6 ± 0.6, women = 2.7 ± 0.2, and men = 3.0 ± 0.2 mM; P < 0.05). This difference persisted through bout 2 only in females. On average, children's sweat pH was lower than that of adults (mean ± SEM, girls = 5.4 ± 0.2, boys = 5.0 ± 0.1, women = 6.2 ± 0.5, and men = 6.2 ± 0.4 for bout 1, and girls = 5.4 ± 0.2, boys = 6.5 ± 0.5, women = 5.2 ± 0.2, and men = 6.9 ± 0.4 for bout 2). This may have favored NH3 transport from plasma to sweat as accounted for by a significant correlation between sweat NH3 and H+ (r = 0.56). Blood pH increased from rest (mean ± SEM; 7.3 ± 0.02) to the end of exercise (7.4 ± 0.01) without differences among groups. These results, however, are representative of sweat induced by moderate exercise in the absence of acidosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study discusses the significance of having service as a business logic, and more specifically, how value co-creation can be seen as an enhancing phenomenon to business-to-business relationships in traditional business sector. The purpose of this study is to investigate how value cocreation can enhance a business-to-business relationship in the heating, ventilation and airconditioning (HVAC) industry of building services engineering, through three sub-objectives: to identify what is value in the industry, how value is co-created in the industry, and what is value in a business-to-business relationship in the industry. The theoretical part this study consists of academic knowledge and literature related to the concepts of value, value co-creation and business-to-business relationships. In order to research value co-creation and business-to-business relationships in HVAC industry of building services engineering both, metaphorical and conceptual thinking of service dominant (S-D) logic and more managerial approach of service logic (SL), contributed to the theoretical part of the study. The empirical research conducted for this study is based on seven semi-structured interviews, which constituted the holistic, qualitative single case study method chosen for the research. The data was collected in September 2014 from CEOs, managers and owners representing six building services engineering firms. The interviews were analysed with the help of transcriptions, role-ordered matrices and thematic networks. The findings of this study indicate that value in HVAC industry consists of client expertise and supplier expertise. The result of applying client expertise and supplier expertise to the business-to- business relationship is characterized as value-in-reputation, when continuity, interaction, learning and rapport of the business relationship are ensured. As a result, value co-creation in the industry consists of mutual and separate elements, which the client and the supplier apply in the process, in addition to proactive interaction. The findings of this study, together with the final framework, enhance the understanding of the connection existing between value co-creation and business-to-business relationship. The findings suggest that value in the HVAC industry is characterized by both value-in-use and value-inreputation. Value-in-reputation enhances the formation of value-in-use, and consequently, value cocreation enhances the business-to-business relationship. This study thus contributes to the existing knowledge on the concepts of value and value co-creation in business-to-business relationships.