970 resultados para HYALURONIC-ACID
Resumo:
Numerous investigations have utilized various semi-purified and purified diets to estimate the protein and amino acid requirements of several temperate fishes. The vast literature on the protein and amino acid requirements of fishes has continued to omit that of the tropical warm water species. The net effect is that fish feed formulation in Nigeria have relied on the requirement for temperate species. This paper attempts to review the state of knowledge on the protein amino acid requirements of fishes with emphasis on the warm water species, the methods of protein and amino acid requirement determinations and the influence of various factors on nutritional requirement studies. Finally evidence are presented with specific examples on how requirements of warm water fishes are different from the temperate species and used this to justify why fish feed formulation in Nigeria are far from being efficient
Resumo:
Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.
RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.
Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.
Resumo:
The mobility of heavy metals (Zn, Cd, Pb and Ni) was studied in the laboratory acidic leaching two different soils around Ibadan with simulated acid rain. The sampling was carried out from two different sites viz: Orogun and Ilupeju respectively. For Orogun site a depth of 128cm was reached (consisting of four horizons). Different length of polyvinyl chloride (PVC) pipes were cut for different soil horizon depth as observed on the field. The PVC pipes were packed with requires masses of soil. This is then leached using simulated acid rain of different pH of 2.0, 4.0, 6.0 and 8.0 after spiking with known volume of standard solution of metals of interest. It was found that simulated acid rain enhanced the mobility of metals in solution. The pH, Cation Exchange capacity, % clay and organic matter were found to contributed majority to the mobility of metals. Generally as observed, the mobility of metal was to follow the order Zn>Ni>Pb>Cd as the soil is becoming more acidic
Resumo:
Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.
Resumo:
This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.
In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.
Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.
Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.
Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.
Resumo:
The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.
Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.
Resumo:
This brief report concentrates on the effect of low pH on the initial stages of decomposition and the conditioning of incoming particulate carbon or detritus by microbes, particularly certain genera of filamentous bacteria. Although many previous reports have concentrated on bacterial decomposition processes, little attention has been given to the composition of the bacterial community and the role of its component parts, particularly in nutrient-poor waters which are provided with sources of organic carbon and reducing power in the form of poor quality detritus.
Resumo:
I. Trimesic acid (1, 3, 5-benzenetricarboxylic acid) crystallizes with a monoclinic unit cell of dimensions a = 26.52 A, b = 16.42 A, c = 26.55 A, and β = 91.53° with 48 molecules /unit cell. Extinctions indicated a space group of Cc or C2/c; a satisfactory structure was obtained in the latter with 6 molecules/asymmetric unit - C54O36H36 with a formula weight of 1261 g. Of approximately 12,000 independent reflections within the CuKα sphere, intensities of 11,563 were recorded visually from equi-inclination Weissenberg photographs.
The structure was solved by packing considerations aided by molecular transforms and two- and three-dimensional Patterson functions. Hydrogen positions were found on difference maps. A total of 978 parameters were refined by least squares; these included hydrogen parameters and anisotropic temperature factors for the C and O atoms. The final R factor was 0.0675; the final "goodness of fit" was 1.49. All calculations were carried out on the Caltech IBM 7040-7094 computer using the CRYRM Crystallographic Computing System.
The six independent molecules fall into two groups of three nearly parallel molecules. All molecules are connected by carboxylto- carboxyl hydrogen bond pairs to form a continuous array of sixmolecule rings with a chicken-wire appearance. These arrays bend to assume two orientations, forming pleated sheets. Arrays in different orientations interpenetrate - three molecules in one orientation passing through the holes of three parallel arrays in the alternate orientation - to produce a completely interlocking network. One third of the carboxyl hydrogen atoms were found to be disordered.
II. Optical transforms as related to x-ray diffraction patterns are discussed with reference to the theory of Fraunhofer diffraction.
The use of a systems approach in crystallographic computing is discussed with special emphasis on the way in which this has been done at the California Institute of Technology.
An efficient manner of calculating Fourier and Patterson maps on a digital computer is presented. Expressions for the calculation of to-scale maps for standard sections and for general-plane sections are developed; space-group-specific expressions in a form suitable for computers are given for all space groups except the hexagonal ones.
Expressions for the calculation of settings for an Eulerian-cradle diffractometer are developed for both the general triclinic case and the orthogonal case.
Photographic materials on pp. 4, 6, 10, and 20 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.
Quantitative, Time-Resolved Proteomic Analysis Using Bio-Orthogonal Non-Canonical Amino Acid Tagging
Resumo:
Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.
Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.
Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.
In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.
In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.
Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.
Resumo:
The determination of bi- and trivalent iron in proximity, in mineral waters has gained in significance, on biological and technical grounds. This short paper describes the procedure of the determination of bivalent iron and total iron in a water sample.
Resumo:
The object of this investigation is to devise a rapid, fairly accurate, colorimetric analysis for HCN to be used in field work for determining instantaneous concentrations of the gas under fumigating canvas. A large amount of money is expended yearly by the citrus industry of this state in attempting to control and to eradicate the scale pests. Although fumigation with HCN has been practiced tor many years, the progress made has been anything but satisfactory. The greater portion of the work has always been carried on by contractors, who in a large number of cases have been very unscrupulous. The materials and labor are very expensive and the growers have been satisfied to adhere to beaten paths and hope for the best results on scale kill with the least attendant foliage injury. One familiar with fumigating, either from the grower's or the operator's viewpoint, knows that very widely varying results are obtained, even under what are apparently identical condition. Even after discounting for the dishonesty of some operators and the prejudices of the grower, there is still a large variance between desired or expected results and those actually obtained.
Resumo:
The final object of this research was to prepare m-nitrobenzoyl malic acid and to separate it, if possible, into the four stereoisomers predicted by the Huggins' theory of the benzene ring. Inasmuch as the quantity of m-nitro- benzoyl chloride available was limited it was thought better to first prepare i-benzoyl malic acid and then attempt to resolve it. The resolution of m-nitrobenzoyl malic acid could probably be accomplished by a similar method.
Resumo:
Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora
Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.
L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.
The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.
The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.
Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora
Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.
Resumo:
Picric acid possesses the property, which is rare among strong electrolytes, of having a convenient distribution ratio between water and certain organic solvents such as benzene, chloroform, etc. Because of this property, picric acid offers peculiar advantages for studying the well known deviations of strong electrolytes from the law of mass action, for; by means of distribution experiments, the activities of picric acid in various aqueous solutions may be compared.
In order to interpret the results of such distribution experiments, it is necessary to know the degree of ionization of picric acid in aqueous solutions.
At least three series of determinations of the equivalent conductance of picric acid have been published, but the results are not concordant; and therefore, the degree of ionization cannot be calculated with any degree of certainty.
The object of the present investigation was to redetermine the conductance of picric acid solutions in order to obtain satisfactory data from which the degrees of ionization of its solutions might be calculated.
Resumo:
There is no evidence of an increase in the acidity (lower pH or alkalinity) of water-bodies in the Lake District over the last 50 years. Brown trout occur in acid streams and upland tarns where pH is 4.5-5.2 throughout the year. Their occurrence in such waters in Britain and Ireland has been known for most of this century and there is no previous evidence of harmful effects on salmonid fisheries, though numbers of fish are naturally low. However, many benthic invertebrates that are common in hill-streams where pH is above 5.7 do not occur in more acid streams. This phenomenon occurs in the headwaters of several western rivers in Cumbria. It is not a recent response to "acid rain". Harmful effects of pH are undoubtedly more pronounced in waters that are poor in other dissolved ions. Low concentrations of sodium, potassium, calcium and chloride are especially important and may limit the distributions of some aquatic animals even where pH is above 5.7. The concentration of sulphate ions is usually relatively high but this is not important to the fauna; concentrations are at least two times higher in productive alkaline water-bodies than they are in unproductive acid waters.