903 resultados para HIV-1 NDK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of species selectivity, HIV research is largely restricted to in vitro or clinical studies, both limited in their ability to rapidly assess new strategies to fight the virus. To prospectively study some aspects of HIV in vivo, immunodeficient mice, transplanted with either human peripheral blood leukocytes or human fetal tissues, have been developed. Although these are susceptible to HIV infection, xenoreactivity, and short infection spans, resource and ethical constraints, as well as biased HIV coreceptor tropic strain infection, pose substantial problems in their use. Rag2(-/-)gamma(c)(-/-) mice, transplanted as newborns with human CD34(+) cells, were recently shown to develop human B, T, and dendritic cells, constituting lymphoid organs in situ. Here we tested these mice as a model system for HIV-1 infection. HIV RNA levels peaked to up to 2 x 10(6) copies per milliliter of plasma early after infection, and viremia was observed for up to 190 days, the longest time followed. A marked relative CD4(+) T cell depletion in peripheral blood occurred in CXCR4-tropic strain-infected mice, whereas this was less pronounced in CCR5-tropic strain-infected animals. Thymus infection was almost exclusively observed in CXCR4-tropic strain-infected mice, whereas spleen and lymph node HIV infection occurred irrespective of coreceptor selectivity, consistent with respective coreceptor expression on human CD4(+) T cells. Thus, this straightforward to generate and cost-effective in vivo model closely resembles HIV infection in man and therefore should be valuable to study virus-induced pathology and to rapidly evaluate new approaches aiming to prevent or treat HIV infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Highly active antiretroviral therapy (HAART) for the treatment of HIV infection was introduced a decade ago. We aimed to examine trends in the characteristics of patients starting HAART in Europe and North America, and their treatment response and short-term prognosis. METHODS: We analysed data from 22,217 treatment-naive HIV-1-infected adults who had started HAART and were followed up in one of 12 cohort studies. The probability of reaching 500 or less HIV-1 RNA copies per mL by 6 months, and the change in CD4 cell counts, were analysed for patients starting HAART in 1995-96, 1997, 1998, 1999, 2000, 2001, and 2002-03. The primary endpoints were the hazard ratios for AIDS and for death from all causes in the first year of HAART, which were estimated using Cox regression. RESULTS: The proportion of heterosexually infected patients increased from 20% in 1995-96 to 47% in 2002-03, and the proportion of women from 16% to 32%. The median CD4 cell count when starting HAART increased from 170 cells per muL in 1995-96 to 269 cells per muL in 1998 but then decreased to around 200 cells per muL. In 1995-96, 58% achieved HIV-1 RNA of 500 copies per mL or less by 6 months compared with 83% in 2002-03. Compared with 1998, adjusted hazard ratios for AIDS were 1.07 (95% CI 0.84-1.36) in 1995-96 and 1.35 (1.06-1.71) in 2002-03. Corresponding figures for death were 0.87 (0.56-1.36) and 0.96 (0.61-1.51). INTERPRETATION: Virological response after starting HAART improved over calendar years, but such improvement has not translated into a decrease in mortality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.